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L’entropie est un concept anthropique.
É.Ghys

This is a six hours course given by Mikael de la Salle at Ens de Lyon as an introduction
to the winter school Entropies & soficity held January 2018 in Lyon, France. The goal of the
course was to study both measure-preserving and topological dynamical systems and to
define different entropies of Z-actions. In no case Mikael de la Salle can be held responsible
for the errors that are left in this paper.

1 Dynamical systems

1.1 Measure-preserving dynamical system

Definition. A measure-preserving dynamical system is an action of a group G on a probability
space (X,A, µ), such that for all g ∈ G, the map defined on X by x 7→ g · x is measurable and
measure-preserving: for all A ∈ A,

µ(g−1A) = µ(A),

where g−1A = {x ∈ X, g · x ∈ A}.

Since G is a group, the maps x 7→ g · x are all invertible. This definition of measure-
preserving dynamical systems excludes very interesting examples, such as the angle dou-
bling map on the circle.

The groups under consideration will be countable. We write G y (X,A, µ) for the
dynamical system given by the action of G on (X,A, µ). If G = Z then the group action is
given by the iteration of an invertible, bimeasurable and measure-preserving map T : X →
X, which we denote by Z yT (X,A, µ).

The standard hypothesis. In this paper, we always assume that (X,A, µ) is a standard
probability space, this means that (X,A, µ) is isomorphic to a compact metric space en-
dowed with its completed Borel sigma-algebra with respect to a Borel probability measure.

Let us recall how to construct the completion of a sigma-algebra. Let (X,A0, µ) be a
measure space. A subset B of X is negligible if there exists A ∈ A0 such that B ⊂ A and
µ(A) = 0. The completed sigma-algebra A is the smallest sigma-algebra containing A0 and
the negligible sets. It can be shown that

A = {A ∪ B | A ∈ A0, B negligible set of X}.
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The measure µ can be extended to a measure on A in the following way : for all A ∈ A0
and for all negligible set B,

µ(A ∪ B) = µ(A).

Another way to proceed is to consider the semi-metric space (2X, d0) where d0(A, B) =
µ0(A∆B). This is indeed symetric and satisfies the triangle inequality. Then A is taken as
the closure of A0 in 2X for that semi-metric: A∞ ∈ A if there is a sequence An ∈ A0 such
that d0(An, A∞)→ 0. The measure µ0 extends by continuity to µ defined on A.

Example. Every Borel measure on a polish space, that is a complete separable metric space,
is standard. In fact, standard probability space are completely classified. Such a space is
either isomorphic the compact interval [0, 1] endowed with its Lebesgue measure, or to a
countable set with some counting measure, or else to a disjoint union of the two previous.

Remark. The standard hypothesis prevents two undesirable phenomenae. The first appears
when there are redundant information in the underlying set from the measure theoretic
point of view. For instance with X = [−1, 1] endowed with the symetric Borel algebra: {B ∈
B(X)|B = −B}. The second happens when X is so big that L1(X,A, µ) is not separable.
Actually, if (Y,B, µ) is a space such that L1(Y,B, ν) is separable, then there exists a standard
space (X,A, µ) such that L1(Y,B, ν) = L1(X,A, µ).

Shifts. The archetypal example of a measure-preserving dynamical system is the Bernoulli
shift. Let (X,A, µ) be a probability space. The Bernoulli shift on X is the map

S : XZ −→ XZ

(an)n∈Z 7−→ (an−1)n∈Z
(1)

The Z-action defined by n · x = Sn(x) gives rise to a measure-preserving dynamical system
on (XZ,A⊗Z, µ⊗Z).

More generally, if G is a countable discrete group, denote by XG the topological product
space, which is a compact metrizable space since G is countable. One can show that there
exists a unique probability measure µ⊗G on XG that behaves as a product measure. The ac-
tion of G on (XG,A⊗G, µ⊗G) given by g · (ah)h∈G = (ag−1h)h∈G is also a measure-preserving
dynamical system.

Isomorphism between measure-preserving dynamical systems. Two measure-preserving
dynamical systems G y (X,A, µ) and G y (Y,B, ν) are called isomorphic, or conjugate, if
there exists a bimeasurable and measure-preserving bijection ϕ : X′ → Y′ between subsets
X′ ⊂ X and Y′ ⊂ Y of full measure, such that ϕ∗µ = ν and which is equivariant under the
G-actions: for all x ∈ X′ and all g ∈ G,

ϕ(g · x) = g · ϕ(x).

The natural problem is to classify dynamical systems up to isomorphism. For instance,
under which conditions are the Bernouilli shifts over two probability spaces (X,A, µ) and
(Y,B, ν) isomorphic? One way to answer this question is to find numerical invariants under
conjugacy, such as the measure-theoretic entropy.
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Factors. The dynamical system G y (Y,B, ν) is a factor of G y (X,A, µ) if there exists a
measurable and measure-preserving map q : X → Y which is equivariant with respect to
the G-actions: for all x ∈ X and all g ∈ G,

q(g · x) = g · q(x).

One thinks of G y (Y,B, ν) as being simpler than G y (X,A, µ).

Exercise. G y (Y,B, ν) is a factor of G y (X,A, µ) if and only if G y (Y,B, ν) is isomorphic
to G y (X,A′, µ) where A′ is a G invariant sub-sigma-algebra of A.

Preliminary notions for the measure-theoretic entropy.

Definition. A µ-partition (or partition) of the probability space (X,A, µ) is a finite or countable
collection P = {Pn ∈ A} such that

· µ(Pn ∩ Pm) = 0 if m 6= n,

· µ(Pn) > 0,

· µ((
⋃

Pn)
c) = 0.

A µ-partition P is a refinement of Q, and we write Q 4 P if each element of P is
contained in an element of Q (up to a negligible set). The join P ∨Q of two µ-partitions P
and Q is the µ-partition

{Pn ∩Qm | m, n ∈N, µ(Pn ∩Qm) > 0}.

Thus, the µ-partition P ∨Q is a refinement of P and Q.

Remark. The ∨ notation refers to a supremum for the lattice structure on the µ-partitions of
X induced by the partial order 4.

If G y (X,A, µ) is a measure-preserving dynamical system and P a µ-partition, then
for all g ∈ G, the g-pullback g−1P of P given by {g−1Pn | n ∈N} is also a µ-partition.

We can provide a coding for a point x ∈ X by looking at its trajectory in the parts of a
partition, under the action of G:

q : X −→ PG

x 7−→ ({P ∈ P | g−1 · x ∈ P})g∈G

This map is equivariant under the G-actions: for all g ∈ G and all x ∈ X, q(g · x) = g · q(x).

Definition. The µ-partition P of (X,A, µ) is called generating for the G-action if the completion
with respect to µ of the smallest σ-algebra containing all the g−1P for g ∈ G is equal to A.

Proposition. If P is generating, then q : (X,A, µ)→ (PG, q∗A, q∗µ) is an isomorphism.

Remark. Beware, the action of G on (PG, q∗A, q∗µ) is not a Bernoulli shift in the sense that
the measure q∗µ is not the product measure over some fixed alphabet space.
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1.2 Topological dynamical system

Definition. A topological dynamical system is an action of a group G on a topological space X such
that for all g ∈ G, the map defined on X by x 7→ g · x is an homeomorphism.

As in the measure preserving case, G is a countable group, and we write G y X. When
G = Z, the group action is given by the iteration of an homeomorphism T : X → X, and
we write Z yT X.

The compact metric hypothesis. In this paper, we always assume the topological space X
to be a compact metrizable space.

Shifts. Let X be a finite set, and µ a probability measure on (X, 2X). The shift S defined
in (1) is an homeomorphism if X is endowed with the discrete topology and XZ the prod-
uct topology. Thus, the action of Z on XZ corresponding to the iteration of S defines a
topological dynamical system.

More generally, the action of a countable discrete group G on XG (endowed with the
product topology) given by g · (ah)h∈G = (ag−1h)h∈G defines similarly a topological dynam-
ical system.

Isomorphism between topological dynamical systems. Two topological dynamical sys-
tems G y X and G y Y are isomorphic, or conjugate, if there exists a G-equivariant homeo-
morphism ϕ : X → Y.
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2 Entropies of Z-actions

In this section we focus on Z-actions, which amount to the iteration of an invertible map
on the underlying space. By convention, we extend by continuity the map t 7→ t log(1/t)
with 0 log(1/0) = 0.

2.1 Entropy of a measure-preserving dynamical system

2.1.1 Shannon’s entropy of partitions

Definition. The entropy of a partition P of (X,A, µ) is the quantity H(P , µ) ∈ [0, ∞] defined by:

H(P , µ) = ∑
A∈P

µ(A) log(1/µ(A)).

If the measure µ is clear in the context, the entropy of the partition P is denoted as H(P).

The entropy is to be interpreted as the average amount of binary digits of information
one has to provide to tell in which part a random point x ∈ X belongs to. Indeed, using
dichotomy, one can specify any element of A ∈ P in roughly log(1/µ(A)) bits of informa-
tion.

Remark. Note that µ 7→ H(P , µ) is concave as a sum of t 7→ t log(1/t):

(1− λ)H(P , µ) + λH(P , ν) ≤ H(P , (1− λ)µ + λν).

Therefore, the entropy is maximal for a uniform measure.

Definition. The conditional entropy of a partition P with respect to Q is:

H((P , µ)|Q) = ∑
B∈Q

µ(B)>0

µ(B)H(P , µB),

where µB = µ(· ∩ B)/µ(B).

As in the non-conditional case, the conditional entropy is the average amount of addi-
tional information one has to give in order to specify the P-coding of a point if we already
know its Q-coding.

Lemma. Let P , Q, Q′ be partitions of (X,A, µ) such that Q′ refines Q and H(Q′) is finite. Then

· H(P|Q) = H(P ∨Q)− H(Q),

· H(P|Q′) ≤ H(P|Q) ≤ H(P),

· H(Q) ≤ H(Q′).

Proof. The first identity is immediate after developing log(µB(A)) = log(µ(A∩ B))− log(B)
and separating the sum. The second and the third follow by summing by parts ∑B′∈Q =

∑B∈Q ∑B′⊂B and using convexity of H.
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Remark. If P and Q are two partitions, then

H(P ∨Q) ≤ H(P) + H(Q),

with equality if and only if P and Q are "independant" in the following sense : for all
A ∈ P , B ∈ Q, µ(A ∩ B) = µ(A)µ(B).

Define the mutual information I and the decorelation d between two partitions:

I(P ,Q) = H(P) + H(Q)− H(P ∨Q),
d(P ,Q) = H(P|Q) + H(Q|P).

Those are non negative quantities, that are related by the formula

d(P ,Q) = H(P) + H(Q)− 2I(P ,Q).

The decorelation d satisfies d(P ,Q) = 0 ⇔ P = Q up to negligible sets. This is because
H(P|Q) = 0 implies that Q refines P . Moreover, one can show that if P ,Q and R are
partitions, then H(P|Q) ≤ H(P|R) + H(R|Q), which implies that d satisfies the triangle
inequality. Thus d is a distance on the set of partitions up to negligible sets, known as the
Rokhlin distance.

We can sum up all this in the following diagram.

H(P|Q) H(Q|P)I(P ,Q)

H(P) H(Q)

d(P ,Q)

H(P ∨Q)

2.1.2 Kolmogorov’s entropy of a dynamical system

If Z yT (X,A, µ) is a measure-preserving dynamical system and P a µ-partition of (X,A, µ),
for all integer n, we set

Pn =
n−1∨
i=0

T−iP .

Definition. Let P be a µ-partition of the measure-preserving dynamical system Z yT (X,A, µ)
with finite entropy. Then the following limit is well defined:

h(P , µ, T) = lim
n→∞

1
n H(Pn, µ)

and it increases by taking refinements of the µ-partition P . The number

h(µ, T) = sup{h(P , µ, T) | H(P) < ∞}

is the entropy of the dynamical system Z yT (X,A, µ). Entropy is invariant under isomorphism
of measure-preserving dynamical system.
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Proof. The sequence (H(Pn))n∈N is subadditive :

H(Pm+n) = H(Pn ∨ T−nPm)

= H(Pn) + H(T−nPm|Pn)

≤ H(Pn) + H(Pm).

Hence, the limit is well defined. The previous lemma implies it is monotonous with respect
to the µ-partition.

The next result is one of the main tools to compute entropies of dynamical systems and
to avoid working with a supremum over µ-partitions.

Theorem (Kolmogorov-Sinaï). If a µ-partition P with finite entropy is generating, then

h(µ, T) = h(P , µ, T).

Corollary 1. If (A, µ) is a finite probability space then,

h(AZ, µ⊗Z, S) = H(A, µ) = ∑
x∈A

µ(x) log(1/µ(x))

In particular, if the underlying base spaces have different entropies then the Bernoulli shifts over
those alphabets are not isomorphic.

Corollary 2. If Z yT (X,A, µ) has a generating µ-partition with a finite number m of parts, then
h(µ, T) ≤ log m

One can prove that the converse of Corollary 2 is true: if h(µ, T) ≤ log m then there
exists a generating µ-partition with less than m parts.

Theorem (Entropy decreases through factors). If q : (X,A, µ)→ (Y,B, ν) is a factor map be-
tween two dynamical systems Z yT (X,A, µ) and Z yS (Y,B, ν), then h(ν, S) ≤ h(µ, T).

2.1.3 Proof of the Kolmogorov-Sinaï theorem

We must show that for any other µ-partition Q with finite entropy, we have

h(Q, µ, T) ≤ h(P , µ, T)

for A = σ

( ⋃
n∈N

∨
|j|<N

T−jP
)

.

Particular Case. There is an integer N such that
∨
−N≤j≤N T−jP refines Q. Then, leaving

out µ and T from notations, we use monotony with respect to µ-partitions, the definiton
of entropy h in terms of H and that of H. The last equality is where we make use of the
amenability of the group Z:
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h(Q, T) ≤ h
( ∨
|j|<N

T−jP
)

= lim
n→∞

1
n H
( N+n−1∨

i=−N

T−iP
)

= lim
n→∞

1
n H(TNP2N+n)

= lim
n→∞

n+2N
n

1
n+2N H(P2N+n)

= h(P , T).

General Case. We reduce it to the particular case with the following lemmas.

Lemma. For all ε > 0, there exists a µ-partition Q′ with finite entropy such that d(Q,Q′) < ε.

Recall that Qn =
n−1∨
i=0

T−iQ.

Lemma. H(Qn|Q′n) ≤ nH(Q|Q′) and the same holds exchanging Q and Q′.

Proof. Using the definition of Qn, the subadditivity lemma and monotony:

H(Qn|Q′n) = H
( n−1∨

i=0

T−iQ|Q′n
)

≤
n−1

∑
0

H(T−iQ|Q′n)

≤
n−1

∑
0

H(T−iQ|T−iQ′)

≤ nH(Q|Q′).

2.2 Entropy of a topological dynamical system

Metric approach. Let Z yT X be a topological dynamical system, where X is a compact
metrizable space. A distance d on X inducing the topology can be refined under iterations
of T by setting for all integer n:

dn(x, y) = max
i∈{0,...,n−1}

d(Tix, Tiy).

The function dn is a distance inducing the topology of X whose open balls are:

Bdn(x, ε) =
n−1⋂
i=0

T−i(Bd(Tix, ε)).
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For ε > 0, define the covering number and the packing number as

rn(ε) = min
{

#F | F ⊂ X,
⋃
x∈F

Bdn(x, ε) = X
}

,

sn(ε) = max{#F | F ⊂ X, ∀x, y ∈ F, x 6= y⇒ dn(x, y) ≥ ε}.

These two numbers are related by the inequalities

sn(2ε) ≤ rn(ε) ≤ sn(ε).

Remark. The covering and packing numbers give an estimate of the number of different
orbits under the mapping T one can get with a spatial resolution to the order ε. The more
T mixes points around in X, the greater the number of orbits. As before, the entropy shall
measure the average exponential growth of this number, in the limit where the resolution
gets thinner.

Definition. The metric entropy of Z yT (X, d) is defined by the nondecreasing ε-limits:

hd(T) = lim
ε→0

lim sup
n→∞

1
n log rn(ε) = lim

ε→0
lim sup

n→∞

1
n log sn(ε).

Remark. This definition depends sharply on the distance d, although we shall see that the
actual invariant h does not. In fact, we define below an invariant htop using topological
concepts only, and show that it is equal to the metric entropy for any compatible metric
structure. Therefore, the metric entropy actually only depends on the topology arising
from the metric.

Topological approach. An open cover of X is a cover consisting of open sets. An open cover
β is a refinement of an open cover α if each element of β is contained in an element of α. As
for partitions, the join α ∨ β of two open cover α and β is the cover {A ∩ B | A ∈ α, B ∈ β}.
For a topological dynamical system Z yT X and an open cover α of X, we set

αn =
n−1∨
i=0

T−iα.

A subcover of a cover α is a subfamily β ⊂ α which is also a cover. In particular it is a
refinement of α. For an open cover α, set

N(α) = min{#β | β open subcover of α}.

Definition. Let α be an open cover of a topological dynamical system Z yT X. Then the following
limit is well defined and increases by taking refinements of α:

htop(α, T) = lim
n→∞

1
n log N(αn).

Define the topological entropy of the system Z yT X:

htop(T) = sup{htop(α, T) | α open cover}.

Entropy is invariant under isomorphism of topological dynamical systems.
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Proof. The submultiplicativity N(α ∨ β) ≤ N(α)N(β) ensures that the limit exists. If β is
a refinement of α, then βn is a refinement of αn, and N increases by taking refinements.
Therefore htop(α, T) is monotonous with respect to the open cover.

Theorem. For any topological dynamical system Z yT (X, d), hd(T) = htop(T).

Remark. If α is an open cover of X, there exists by compactness of X a Lebesgue number
δ > 0 such that every subset of X with diameter less than δ is contained in an element of α.
The diameter of an open cover β is diamd β = sup{diamd B | B ∈ β}.

Thus, if β is an open cover with diamd β ≤ δ, then β refines α. Therefore, if αn is a
sequence of open covers with diam αn → 0, then

htop(T) = lim
n→∞

htop(αn, T).

Proof that topological entropy and metric entropy coincide. Each of the following lem-
mas yields one inequality between hd and htop.

Lemma. Let δ be a Lebesgue number of an open cover α. Then N(αn) ≤ rn(δ/2).

Proof. Let F be a subset of X such that #F = rn(δ/2) and Bdn(F, δ/2) = X, where

Bdn(F, δ/2) =
⋃
x∈F

Bdn(x, δ/2) =
⋃
x∈F

n−1⋂
i=0

T−i(Bd(Tix, δ/2)).

By definition of δ, for all i ∈ {0, . . . , n − 1} and for all x ∈ F, the ball Bd(Tix, δ/2) is
contained in an element of α. Thus Bdn(x, δ/2) is contained in an element αn

x of αn. Choosing
those elements (αn

x)x∈F gives a subcover which implies the inequality in the lemma.

Lemma. Let α be an open cover of diameter less than ε. Then sn(ε) ≤ N(αn).

Proof. Let F be an ε-net of X for dn, that is an ε-packing (∀x, y ∈ F, x 6= y ⇒ dn(x, y) > ε)
with maximal cardinality sn(ε). By definition of dn, any element of αn has a dn-diameter
smaller than ε. So any element of a subcover β of α contains at most one point of F:
#F ≤ #β.

Expansive maps.

Definition. A map T : X → X is δ-expansive if for all x, y ∈ X, there exists an integer n ∈ Z

such that
d(Tnx, Tny) > δ.

Expansiveness of T does not depend on the distance d. In fact, if d′ is another distance
then by compactness of X, d and d′ are uniformly equivalent: the identity map from (X, d)
to (X, d′) is uniformly continuous. This implies that T is δ′-expansive with respect to d′.
For an expansive map T, there exists an open cover α that is metrically generating in the
following sense :

diam
( n∨

i=−n

T−iα

)
−→
n→∞

0.
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The following theorem is a practical tool to compute entropy of topological dynamical
systems and to avoid working with a supremum over open covers or with thinner and
thinner resolution of ε-covers.

Theorem. Let T : X → X be a δ-expansive map for d, and α a metrically generating open cover.

· hd(T) = htop(α, T).

· ∀ε < δ
4 , h(T) = lim

n→∞

1
n log rn(ε) = lim

n→∞

1
n log sn(ε).

Proof. For the first assumption, by definition of a metrically generating open cover and by
the previous remark concerning covers whose diameter shrinks to 0:

h(T) = lim
n→∞

htop

( n∨
i=−n

T−iα, T
)

.

Then, the last equality is where we make use of the amenability of Z:

htop

( n∨
i=−n

T−iα, T
)
= lim

k→∞

1
k log N

( k−1∨
j=0

T−j
( n∨

i=−n

T−iα
))

= lim
k→∞

1
k log N(α2n+k−1)

= lim
k→∞

2n+k−1
k

1
2n+k−1 log N(α2n+k−1)

= htop(α, T).

2.3 The variational principle

The main result of this section relates entropies of topological and measure-preserving
dynamical systems.

Let X be a compact metrizable space, and T : X → X a homeomorphism. Denote
by M(X, T) the set of Borel probability measures on X invariant under T. It is a convex
compact subset of the dual to the topological vector space (C(X), ‖·‖∞) endowed with the
weak-star topology.

Theorem (Markov-Kakutani). The setM(X, T) is nonempty.

Proof. Let µ be a Borel probability measure on X. The sequence of means

µn =
1
n

n−1

∑
k=0

Tk
∗µ

has a converging subsequence µnk

∗
⇀ µ∞. Then, for all f ∈ C(X),∣∣∣∣∫X

f ◦ Tdµ∞ −
∫

X
f dµ∞

∣∣∣∣ = lim
k→∞

∣∣∣∣∫X
f ◦ Tdµnk −

∫
X

f dµnk

∣∣∣∣
= lim

k→∞

1
nk

∣∣∣∣∫X
( f ◦ Tnk − f )dµ

∣∣∣∣ ≤ lim
k→∞

2‖ f ‖∞

nk
.

Therefore µ∞ ∈ M(X, T).
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Remark. The map µ ∈ M(X, T) 7→ h(µ, T) is affine. By definition, an invariant measure is
ergodic if it is an extreme point of M(X, T). The Krein-Milmann theorem implies that the
compact convex set M(X, T) is the convex hull of its extremal points. So entropy takes its
extremal values on ergodic invariant measures.

Theorem (Variational principle). Let Z yT X be a topological dynamical system. Then

htop(T) = sup
µ∈M(X,T)

h(µ, T).

Sketch of the proof. We first show that for all µ ∈ M(X, T), h(µ, T) ≤ htop(T)

Particular case. Fix µ ∈ M(X, T). Let P be a µ-partition of X which is also an open cover.
Then for all integer n, H(µ,Pn) ≤ log #Pn = log N(Pn). Therefore,

h(P , µ, T) ≤ lim
n→∞

1
n

log N(Pn) = htop(P , T) ≤ htop(T).

General case. One can enlarge a little bit the pieces of a partition P to get open sets.
For the other inequality, given ε > 0 one constructs a measure µ ∈ M(X, T) such that

lim sup
n→+∞

1
n log sn(ε) ≤ h(µ, T). To do so, let Fn be an ε-net of X for dn. Set

νn =
1

sn(ε)
∑

x∈Fn

δx,

and

µn =
1
n

n−1

∑
i=0

Ti
∗νn.

By compactness, (µn) has a converging subsequence µnk

∗
⇀ µ∞. One can then show that

µ∞ ∈ M(X, T) and that lim sup
n→+∞

1
n log sn(ε) ≤ h(µ, T).
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3 Entropies of amenable groups

The theory of entropy for Z-action has been generalized to actions of amenable groups by
Ornstein and Weiss [3]. This section is a very brief overview of the subject. For more about
entropies of amenable action, see [2]. In the following, the groups under consideration will
be countable.

Definition. A group G is amenable if there exists a Følner sequence : a sequence (Fn) of finite
nonempty subsets of G such that for all g ∈ G,

|gFn ∩ Fn|
|Fn|

−→
n→∞

1.

Measure-preserving entropy.

Definition. Let G y (X,A, µ) be a measure-preserving dynamical system, with G an amenable
group. If P is a finite µ-partition of X, then the following limit

h(P , µ, G) = lim
n→∞

1
|Fn|

log H(P Fn , µ),

where P Fn =
∨

g∈Fn

g−1P , exists and does not depend on the Følner sequence (Fn). Define the measure

entropy of G y (X,A, µ) as

h(µ, G) = sup{h(P , µ, G) | P finite µ-partition}.

Topological entropy. As for Z-actions, there are two equivalent ways of defining the topo-
logical entropy that coincide: one with a metric approach, another with a topological ap-
proach. We only give here the second one.

Definition. Let G y X be a topological dynamical system, with G an amenable group and X a
compact metrizable space. If α is a finite open cover of X, the following limit

htop(α, G) = lim
n→∞

1
|Fn|

log N(αFn),

where αFn =
∨

g∈Fn

g−1α, exists and does not depend on the Følner sequence (Fn). Define the topolog-

ical entropy of G y X as

htop(G) = sup{htop(α, G) | α finite open cover}.

The variational principle. Let G yX be a topological dynamical system, with G an
amenable group and X a compact metrizable space. Denote by M(X, G) the set of Borel
probability measures on X invariant under G, that is for all g ∈ G, and for all Borel set A,
µ(g−1 A) = µ(A). It is a convex compact subset of the dual to the topological vector space
(C(X), ‖·‖∞) endowed with the weak-star topology. As for Z-actions:
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Theorem (Markov-Kakutani). The setM(X, T) is nonempty.

Proof. Let µ be a Borel probability measure on X, and (Fn) a Følner sequence. The sequence
of means

µn =
1
|Fn| ∑

g∈Fn

g∗µ

has a converging subsequence µnk

∗
⇀ µ∞. So, for all f ∈ C(X), and for all g ∈ G:∣∣∣∣∫X

f (g · x)dµ∞(x)−
∫

X
f (x)dµ∞(x)

∣∣∣∣ = lim
k→∞

∣∣∣∣∫X
f (g · x)dµnk(x)−

∫
X

f (x)dµnk(x)
∣∣∣∣

= lim
k→∞

1
|Fnk |

∣∣∣∣∣∣ ∑
g′∈Fnk

∫
X
( f (g · x)− f (x))d(g′∗µ)(x)

∣∣∣∣∣∣
= lim

k→∞

1
|Fnk |

∣∣∣∣∣∣ ∑
g′∈Fnk

∫
X
( f ((gg′) · x)− f (g′ · x))dµ(x)

∣∣∣∣∣∣
= lim

k→∞

1
|Fnk |

∣∣∣∣∣∣ ∑
g′∈gFnk ∆Fnk

∫
X
( f ((gg′) · x)− f (g′ · x))dµ(x)

∣∣∣∣∣∣
≤ 2‖ f ‖∞ × lim

k→∞

|gFnk ∆Fnk |
|Fnk |

.

Therefore µ∞ ∈ M(X, G).

As for Z-actions, the variational principle relates topological and measure entropies.

Theorem. For a topological dynamical system G y X with G amenable and X compact metrizable,

htop(G) = sup
µ∈M(X,G)

h(µ, G).
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4 Nonamenable groups : the example of Ornstein & Weiss

Problem. Can we define a convenient notion of entropy for measure preserving or topo-
logical dynamical systems under the action of any countable group?

A notion of entropy must be a scalar quantity defined for a dynamical system which
is invariant under conjugation and whose size describes the rate at which the group mixes
the elements in the space. By convenient, we mean satisfying the remarkable properties
we have encountered up to now in the case of Z, and which hold true in the more general
context of amenable groups:

· The entropy of a Bernoulli shift is that of its base.

· Entropy decreases through factor maps.

The next example shows that it is not possible to do so for any countable group, and one
has to be ready to let down some of those properties. It is the last which will be relaxed.

Example of Ornstein & Weiss. The free group Γ on two generators a, b acts on its Cay-
ley graph with generating set S = {a±1, b±1}. This is an infinite simplicial complex of
dimension 1 whose verticies are {g | g ∈ Γ} and edges are {(g, gs) | g ∈ Γ, s ∈ S}.

Consider the Bernoulli shift Γ y X = BΓ over the base B = {0, 1} with uniform distribu-
tion. This is the measure preserving action on the vector space of 0-cochains ω : Γ→ Z/2Z

given by: g · (ωv)v∈Γ = (ωg−1v)v∈Γ. If a correct notion of entropy could be defined for the
group Γ, then we would expect the entropy of that shift to equal that of the base: log 2.

The coboundary operator from 0-cochains to 1-cochains is surjective and equivariant
with respect to the action of Γ:

∂ : BΓ −→ BΓ × BΓ = (B× B)Γ

(ωg)g 7−→ (ωga −ωg, ωgb −ωg)g

Since it is measure preserving, it defines a factor map from X to the shift over the base
B× B which should have entropy log 4. This wrecks any hope to define a notion of entropy
satisfying the decreasing property through factor maps, even for such natural maps.
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