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Abstract

Consider an orbifold F whose fundamental group π admits a faithful and discrete repre-
sentation π → PSL2(R). The homotopy classes of unoriented closed loops in F correspond
to the mutually inverse pairs conjugacy classes π. Two such collections of loops α,β have
a geometric intersection number i(α,β). We explain how to recover the intersection pairing
i : π× π→ N as some kind of Killing form over the fundamental group, which we define using
its adjoint action on the graded Lie algebra associated to its descending central series. The
geodesic representatives for the multiloops α and β lift to knots in the unit tangent bundle,
which have a linking number lk(α,β) provided they are homologically trivial. We relate this
to the Poisson bracket {tα | tβ} of their trace functions defined over the symplectic variety of
PSL2(R)-characters. This character variety has a compactification by valuations, whose geo-
metric part corresponds to the space of measured laminations ML. The space ML has a natural
piecewize linear integral structure, a privileged measure in the Lebesgues class, and an intersec-
tion function which extends the one defined on simple loops. We define the Newton polytope
for the trace functions tα as a finite collection Ψ(α) of integral measured laminations, and its
the volume vol(α) as that of the dual polytope with respect to the intersection form defined by
Ψ(α)∗ = max{i(ψ, ·) | ψ ∈ Ψ(α)} 6 1. We relate the mixed volumes of the dual polytopes Ψ(α)
and Ψ(β) to the aforementioned Poisson bracket, intersection and linking numbers.

Keywords. Planar tiling group, character variety, Teichmüller space, symplectic structure;
orbifold, Goldman Poisson bracket; skein algebra, quantization; geodesic currents, measured
laminations, intersection form.
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Introduction

Motivation and plan of the paper
Warning. Almost everything we shall say is well know when π is the fundamental group of a
closed orientable surface F. One of the reasons for these notes is to try and understand to what
extend those constructions and results generalize when π is a more general group like PSL2(Z).
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Notations
The symbol N = {0, 1, . . . } refers to the set of non-negative integers. A plus + indexing a set of
numbers means we only consider non-negative elements; a star ∗ (resp. a cross ×) in exponent
means we have taken out 0 (restricted to invertibles for some multiplicative law). For instance
N \ N∗ = {0} and Z× = {±1} while Q+ ∩ Q− = {0} and Q× = Q∗. A collection, sometimes called
multiset in the cominatorial literature, is a set in which elements may appear with multiplicity.

If unspecified, spaces are given their most natural topology, this holds for instance when per-
forming products or taking quotients. Manifold topology is done in the smoothly differentiable
category, with natural Fréchet topology over spaces of maps (like loop spaces S1 → F). In what
follow, F is a Fuchsian orbifold with fundamental group π; but for the time being we may think of
a compact orientable surface with boundary and s special marked points instead of singularities.

We call an oriented h-loop in F the homotopy class of a smooth map from the circle S1 to F.
The oriented h-loops correspond to conjugacy classes −→π of the fundamental group. An oriented
h-loop is primitive when represented by an element in π generating a maximal cyclic subgroup; it
is torsion when represented by a torsion element. It is peripheric when homotopic into a boundary
component or hole. An oriented g-loop in F is a generic immersion of S1 into F, considered up to
positive reparametrization. An immersion has no cusp-point singularities, and it is generic when
the only singular points in the image correspond to transverse double intersections; in particular
there are no self-tangencies or triple points. An oriented isotopy class of g-loops, called i-loop for
short, corresponds to a connected component in the space of g-loops (hence all topological features
of a g-loop are defined at the level of its isotopy class g-loops will serve only in this paragraph).

In each case, replacing the circle at the source by a finite disjoint union of k ∈ N circles, we
obtain the concept of labelled oriented multiloop with k strands, which may be preceded by h,g, i.
We shall always consider unlabeled multiloops, quotienting by the symmetric group action. The
unoriented counterparts are defined similarly. For instance unoriented h-loops, correspond to the
set π = −→π / inv of mutually inverse pairs of conjugacy classes. We sometimes forget the adjective
(un)oriented or the prefix g,h, i when referring to an object whose nature has been previously
defined or when it is clear from the context to which type of loops the assertion applies.

Two g-multiloops α and β are in general position if their union is generic, that is a g-multiloop
with kα+kβ strands; the same definition holds for i-multiloops. We denote si(α) the geometric self
intersection number of an i-multiloop, and i(α,β) the geometric intersection number between two
i-multiloops in general position. Self-intersection and intersection numbers are defined for h-loops
by taking the minimum of the above quantities over i-loop representatives. An i-loop is taut if it
has minimal geometric self-intersection number among elements in its homotopy class. A loop α is
simple when si(α) = 0; it is essential when there exists another loop β 6= α such that i(α,β) 6= 0.

Simple i-multiloops are precisely the embeddings of closed one-dimensional manifolds into F, up
to isotopy. We denote Φ the set of all such unoriented submanifolds including the emptyset ∅. A
simple h-multiloop ϕ with (unlabeled and) non-trivial strands has a unique taut i-representative,
and is tantamount to the collection {ϕj} of its strands which are disjoint non-trivial simple loops;
we say that ϕj belongs to ϕ and write ϕj ∈ ϕ. We call states and denote Ψ the set of unoriented
submanifolds whose strands are neither trivial nor torsion (encircling one of the s marked points).

Finally, when F has boundary or punctures, all such loop definitions may be adapted to include
arcs which are proper maps from an interval (with zero, one or two ends) mapping the (at most two)
boundary points into the boundary of F (proper implies that the ends must diverge into punctures).
The corresponding sets will be agremented with primes and their elements qualified as dual.
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0 Fuchsian groups and orbifolds

0.1 Orbifolds
General orbifolds. We use here the notion of an orbifold, as defined in [Thu97, Sco83], that is a
countable topological Hausdorff space locally modeled on quotients of the upper half space by finite
groups : there is a countable covering by open sets Uj presented as quotients φj : Ũj → Ũj/Γj ' Uj
of open sets Ũj in the upper half plane by finite groups Γj, such that every inclusion Ui ⊂ Uj is
covered by an equivariant embedding Ũi → Ũj with respect to an inclusion Γi → Γj so that the
diagram commutes with projections. (in other words we have a presheaf of finite group actions).
They form a category whose continuous maps must commute with the group actions in the local
models. The stabilizer of a point x is the smallest group Γj appearing among the local models
of its neighborhoods Uj 3 x belonging to a maximal covering system (in presheaf language, it
is the group acting on the stalk above x, and can be expressed as an inverse limit). A point is
singular if it has non trivial stabilizer. From now on, orbifolds will be connected: one can define
the orbifold fundamental groups either in terms of paths, or deck transformations (there holds an
analog of covering theory with universal covers in the connected orbifold category). As usual, the
fundamental groups are based, and two of them are related by an isomorphism which is unique up
to post conjugation. We omit base points from notations, but keep them in mind. The orbifold has
finite type when its fundamental group does. Finally an orbifold is developable (sometimes called
good) when the orbifold universal cover is smooth (trivial stabilizers Γj), or equivalently when
isomorphic (as an orbifold) to the quotient of a manifold by a subgroup of diffeomorphisms acting
properly and discontinuously. In general the underlying topological space of an orbifold may fail to
be a manifold (as it is the case for the quotient of a 3-ball by antipody, which is a cone on RP2),
but this phenomenon does not occur in the 2-dimensional case which concerns us.

Type of a surface orbifold. Let F be a 2-dimensional connected orbifold with compact boundary
components, in the end we shall only consider the finite type ones with negative Euler characteristic
and no mirror reflectors, but let us explain those last three conditions starting from the general case.
The orbifold F has type (g,h,b, c,d,m) where g is the genus of the underlying topological surface F0
with boundary, h is the number of punctures, b is the number of (circular) boundary components,
m is the number of mirror reflection lines (singular points with Z/2 stabilizers, which are boundary
components of F0 but not considered as boundary of F), and c = {c1, . . . , cs} (respectively d =
{d1, . . . ,dr}) is a possibly infinite collection of elements in N>2 corresponding to the orders of
the conical singularities (reflector corners). To be precise cj (or 2di) is the order of the cyclic
(or dihedral) stabilizer of the point in a local parametrization. The compactness assumption on
boundary components implies they are circles, so for instance we exclude the closed upper half space
and any of its variations (adding handles, boundary, singularities, or taking connected sums). The
orbifold F has finite type if an only if it has a finite number of singularities and boundary components
meaning that g,p,b, s, r,m <∞. The type does not determine the isomorphism type of F, unless
we know the distribution of corner reflectors on the reflector lines. Punctures may sometimes be
thought as conical singularities with infinite order, but also as boundary components with zero
length (for some compatible metric structure). Indeed, punctures and boundary components are
homotopic relatively to the complement of a neighborhood, they only remain distinguished up to
homeomorphism ; and the interior of F is homeomorphic to an orbifold with circular boundaries
replaced by punctures. We use the word holes for puncture or circular boundary, and set h = p+b.
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Figure 1: Different kind of singularities. The bad orbifolds.

Euler characteristic and uniformization. As for closed surfaces, developable orbifolds are
uniformized by exactly one of the three planar geometries G ∈ {S,E,H} according to the sign of the
orbifold Euler characteristic:

χ(F) = 2− 2g− p− b−
∑
j

(
1−

1
cj

)
−
∑
i

(
1−

1
2di

)
More precisely F can be obtained as the quotient of a connected and contractible submanifold with
geodesic boundary F̃ in G, by the action of a discrete subgroup of isometries π ⊂ G± = Isom±(G)
which is isomorphic to its orbifold fundamental group π. A sufficient condition for developability is
to carry a non-positively curved metric (with appropriate angles at singularities), which in dimension
2 amounts to having non-positive orbifold Euler characteristic. More precisely, there are four infinite
families of bad orbifold surfaces pictured on the right hand side of figure 1: the sphere with one, or
two conical singularities of different orders; a disc whose boundary corresponds to one reflector line
meeting at a reflector angle, or two reflector lines meeting at reflector angles with different orders.

So any orbifold with negative Euler characteristic is isomorphic to the quotient of the hyperbolic
plane H by a discrete subgroup of Isom±(H) = PGL2(R). Now suppose it has no mirror reflecting
lines (ergo no corner reflectors neither so that r = 0 = m, in particular it is uniquely characterized
up to isomorphism by its type, which may be abbreviated (g,p,b, c)); and assume furthermore it
is orientable. Those last two conditions (which can always be simultaneously achieved by taking
a double cover) imply together that the orbifold F under consideration is homeomorphic to the
quotient of a contractible subset F̃ in H by a discrete subgroup π of PSL2(R).

This submanifold F̃ is the image by a developing map. In absence of boundary, it is the
whole of H, and F is homeomorphic to H/π. In presence of boundary, F̃ has geodesic boundary,
and F can equivalently be obtained as the convex core inside the complete quotient H/π. This
complete quotient has trumpets whose collar geodesics project to the boundary components of F
;by tightening each trumpet to a cusp while shrinking the collar geodesic as it goes to infinity, we
obtain an orbifold homeomorphic to both H/π and the interior of F, obtained from the latter by
replacing each boundary component by a puncture. So under uniformization, geodesic boundary
circles are the truncation of (infinite area) trumpets at the collar, and punctures are trumpets with
zero length collar (finite area). We now replace F by its interior, having h = p+ b holes.

The hyperbolic metrics on F correspond (by their holonomy representations) to the discrete
embeddings ρ : π→ PSL2(R) up to conjugacy at the target, such that H/ρ(π) is homeo to F.
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Fuchsian orbifolds and lattices. From now on, F will be a connected orientable 2-dimensional
orbifold with negative Euler characteristic, no boundary and no mirror reflection lines. We baptise
this a Fuchsian orbifold: its fundamental group π admits a Fuchsian representation π→ PSL2(R),
meaning faithful and discrete. Indeed, a hyperbolic metric on F defines holonomy representations
which are Fuchsian, and uniquely determined up to conjugacy at the target.

When it has finite type, thus characterized up to homeomorphism by the triple (g,h, c), we call
it a lattice orbifold as it is homeomorphic to the quotient of H by a lattice in PSL2(R), which is a
discrete subgroup with finite covolume. If furthermore compact (no holes), thus characterized up
to homeomorphism by the pair (g, c), then all corresponding lattices in PSL2(R) are cocompact.

Several orbifolds may have the same group (like a holed torus and a three holed sphere), so
the group does not determine the orbifold. When it does, we may call it uniform (non-standard
terminology) because this means exactly one homeomorphism type (one form) occurs among the
quotients H/ρ(π) as ρ : π→ PSL2(R) ranges over the set of all its Fuchsian representations.

Peripheral multiloop. Let F be an oriented Fuchsian orbifold with fundamental group π. Recall
the identification between (inverse pairs) of conjugacy classes in π and (unoriented) homotopy
classes of loops in F. The naturally oriented primitive peripheric loops (encircling one hole) together
form the peripheral multiloop δ corresponding to a set of primitive conjugacy classes δj ∈ −→π . Since
F has contractible universal cover, it behaves like a K(π, 1), and group homology of the pair (π, δ)
mimics that of the oriented embedding δ→ F. In particular, the relative homology of (π, δ) is that
of the fundamental group for the closed orbifold with each end δj contracted to a point. So the map
in Z-homology

⊕
Zδj ' H1(δ)→ H1(π) ' π/[π,π] has rank one kernel generated by [δ] = δ1 . . . δh

(well defined thanks to the orientations of the δj regardless of the labeling) to the power lcm(cj). By
Mayer-Vietoris, this kernel is the image of H2(π, δ), generated by the canonical class ω induced by
the orientation of F. The rank-one kernel reflects a surjectivity condition saying that we have gone
around all peripheric strands, while the order lcm(cj) cokernel reflects the primitivity assumption.
So we have a boundary map H2(π, δ) → H1(δ) sending ω 7→ lcm(cj) · [δ], uniquely defined up to
the symmetric group permuting the generators δj. Switching orientation reverses the signs of all
generators ω and δj simultaneously. We call (π, δ) a framed Fuchsian group.

Modular groups. Denote Mod±(F) = π0 Diff±(F) = Diff±(F)/Diff0(F) the full modular group.
Its index two orientation preserving subgroup Mod(F) is generated by Dehn twists, and half-twists
along simple loops encircling two conical singularities or holes of the same order (cj or ∞). It
extends B(F, (zj, cj)) → Mod(F) → Mod(F0) the modular group for the underlying topological
surface with holes filled in, by the surface braid group on h+ s points zj respecting their partition
into same orders, modulo torsion relations σmij

ij where mij = 2 gcd(ci, cj) and gcd(∞, cj) = cj.
It contains the pure modular group PMod(F) → Mod(F) whose elements induce the trivial

permutation on the h + s holes and singularities, with quotient a product of symmetric groups.
The pure modular group fits in a similar extension PB(F, (zj, cj)) → PMod(F) → PMod(F0).
Intermediate half -pure modular subgroups can be defined, by fixing only the holes for instance.

The Dehn-Nielen-Baer theorem gives an isomorphism between Mod±(F) and the group Out(π, δ)
of relative outer automorphisms preserving the set δ ⊂ π of inverse-pairs of peripheral conjugacy
classes as a whole. The orientation preserving mapping classes correspond to those acting trivially
on H2(π, δ), forming the subgroup Out(π, δ) of relative outer automorphisms. This restricts to an
isomorphism from the pure modular group acting identically over the set of unsessential loops to
the subgroup of outer automorphisms acting identically on the peripheral and torsion classes.
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0.2 Fuchsian groups.
We denote G = PSL2(R). An abstract group π is called Fuchsian if isomorphic to a discrete
subgroup of G; in other words it admits a faithful and discrete representation π → G, called a
Fuchsian representation. From the preceding discussion, any Fuchsian representation ρ of a (finite
type) group π presents it, up to conjugation, as the orbifold fundamental group of a (finite type)
Fuchsian orbifold F = H/ρ(π). Now denoting (g,h, c) its type, and F∞ the manifold obtained from
F0 by removing the conical singular points, an immediate application of the Van-Kampen theorem
shows that π is the quotient of π1(F∞) by the relations τcjj where τj correspond to the loops around
the newly created holes. From this we deduce the following algebraic presentation:

π =
〈
λ1,µ1, . . . , λg,µg; δ1, . . . , δh; τ1, . . . , τs |

∏
[λj,µj] =

∏
δj

∏
τj and τ

cj
j = 1

〉
This computation runs parallel to those performed on fundamental groups of 3-manifolds undergoing
(or presented by) Dehn surgery operations. Actually, the 3-manifold setting somewhat contains the
2-orbifold one, by considering the unit tangent bundle UF ' G/ρ(π). Indeed, the natural (Seifert)
fibration presents its fundamental group Z→ π1(UF)→ π as the universal central extension of π.

Unless h = 0 or h = 1 and g = 0, the group does not determine the type (g,h) of the underlying
surface, let alone the orbifold. Still one may recover the torsion data, and the Euler characteristic.

Torsion. We now explain why the group π uniquely determines the collection c, by considering
its torsion elements. First c = ∅ if and only if π has no torsion, so now suppose it has. Applying
Van-Kampen again but this time to the underlying surface with an additional hole F∗0, one expresses
the group π as an amalgam of π(F∗0) and Z/c1 ∗ · · · ∗Z/cs over the group Z, mapping its generator
in the former to the loop around the added hole represented by

∏
[λj,µj]

∏
δ−1
j , and in the latter

to the product of generators of the cyclic groups
∏
τj. Since π1(F∗0) has no torsion (as it is free

on 2g+h generators), the free amalgam ∗Z/cj is the smallest subgroup of π which contains all the
torsion, thus it is intrinsic to π (so is the quotient, canonically isomorphic to π1(F∗0)). But now
the unique factorization of amalgams [SW79, Theorem 3.5] following from results of Grušhko and
Kuroš, ensures that the cj are uniquely determined up to permutation.

Euler characteristic. Let us show how to also recover from π the Euler characteristic of the
underlying surface χ0 = 2− 2g−h, and the orbifold Euler characteristic χ which is equivalent once
we know c; first using combinatorial invariants, and then by homological methods.

Of course, we may first attempt to extract the quantity 2g + h from the previous amalgam
decomposition over Z, but we should be careful of discussing according to the nature of the kernel
and cokernel of the maps from Z into each factor, and this amounts to distinguishing the case when
F0 is closed on the one hand, and when c is empty on the other. In fact, one may directly identify
the orbifold Euler characteristic χ as the cost of the group π: this numerical invariant defined for
finitely generated groups is additive with respect to free amalgams (that is over nothing, unlike what
we had above), and equals 1− 1/c for a cyclic group of order c (including ∞), but we shall not say
any more as this would lead us too far off. So after two incomplete attempts, we finally introduce
the notion of deficiency which shall be used again later on to provide an intuitive computation
for the dimension of the representation variety Hom(π,G). The deficiency of a finitely presented
group is the minimal difference between the number of generators and relations among all its finite
presentations. For a finitely generated Fuchsian group as above, one may check (distinguishing the
closed case to the presence of ends) that its deficiency always equals 1+ |χ0| where χ0 = χ(F0).

8



Alternatively, one may determine χ0 from the group homology of π. Concretely, this can be done
in two steps, first by examining the existence of cocompact Fuchsian representations, and then by
computing the rank of the abelianization π/[π,π] = H1(π). If there are cocompact representations,
then the rank of H1(π) is |χ0|+ 2, otherwise it is |χ0|+ 1. More conceptually, since F0 is a manifold
and an Eilenberg-Maclane space (because its universal cover is contractible), one may identify
its homology with that of its fundamental group. In particular the Euler characteristic of both
homology complexes (say with Q coefficients) coincide, and χ0 is indeed computable from π. To
recover the previous recipe, note that F is connected so dimH0(F) = 1, that dimH0(F0) is either
1 or 0 depending on whether F0 is closed (by Poincaré duality) or not (homotopic to a wedge of
circles), and that the rank of the abelianization is 2g when the surface is closed and 2g + h − 1
otherwize; in particular the difference dimH2(F0)−dimH1(F0) does not distinguish the closed case.
In formula: χ0 = dimH0(π1(F0)) − dimH1(π1(F0)) + dimH2(π1(F0)) = 2− (2g+ h).

Correspondences. To sum up the previous discussion, a Fuchsian representation ρ : π → G
provides an isomorphism between π and any based fundamental group of F = H/ρ. The home-
omorphism type of the underlying topological surface may depend on the representation, but the
singular data c and Euler characteristic χ0 (or χ) are intrinsic to π.

This is enough to provide, in the closed case, a bijection between homeomorphism types of
closed Fuchsian orbifolds and isomorphism classes of finite type Fuchsian groups with non-zero
second homology, since both are determined by the type (g, c). In particular, a compact implies
uniform. More generally, the finite type Fuchsian orbifolds are classified up to homeomorphism by
the isomorphism class of the fundamental group π together with the additional numerical data h,
as this uniquely determines the homeomorphism type (g,h, c) of F.

One may improve by recasting this in terms of the peripheral data, using the notion of framed
lattices (π, δ), which we defined by describing the map between framed groups H2(π, δ) → H1(δ).
From the previous discussion, oriented lattice orbifolds F up to homeomorphism correspond to
framed lattices (π, δ) up to automorphisms Aut(π, δ). Now fix equivalent types (g,h, c) and (π, δ).
An oriented based lattice orbifold (F, x) up to the group Diff0(F, x) of isotopies relative to the base
point, corresponds to a framed lattice (π, δ); and those admit equivariant actions by the automor-
phism groups Mod(F, x) ' Aut(π, δ) for their respective structures. Birman’s short exact sequence
π1(F, x) → Mod(F, x) → Mod(F) says that forgetting the base point amounts to quotienting by
conjugacy. So an oriented lattice orbifold F modulo isotopies Diff0(F) corresponds to a framed
lattice up to inner automorphisms (π, δ)/ Inn(π); those admit equivariant actions by the structural
automorphism groups Mod(F) ' Out(π, δ). Forgetting orientations, a lattice orbifold up to isotopy
corresponds to a framed lattice (π, δ) up to orientation reversal and conjugacy; those admit equiv-
ariant Mod±(F) = Out(π, δ) actions. To be precise: Out(π, δ) is the Z/2 extension of Out(π, δ) by
the outomorphism simultaneously inverting all generators in a presentation containing the δj.

In categorical language, we started with a groupoid: a set of objects with some structure (based
lattice orbifolds modulo relative isotopy), and all isomorphisms preserving the structure. After
identifying connected components (given by the type), we focused on a connected groupoid, forming
a torsor under the automorphism group of the structure. We then applied the fundamental group
functor to find an equivalent category (framed lattices), this amounts to an equivalence between
simply transitive group actions. Finally, considering various equivalent forgetful functors on both
sides, we found weaker correpondences (between groupoids with less objects having more individual
automorphisms), providing equivalent torsors under quotients of the initial automorphism group.
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Automorphisms. The homeo-type of an oriented lattice orbifold F is almost determined by the
modular group Mod(F) since the maximal braid normal subgroup recovers the number of holes, and
the surface braid subgroup BP(F, (zj, cj)) recovers the partition of conical singularities according
to their order as well as the gcd(ci, cj). The latter determine the cj.

In algebraic terms, a framed lattice (π, δ) up to isomorphism is equivalent to a group Aut(π, δ)
up to conjugacy. As before, this equivalence between the connected components of two groupoids
can be refined in restriction to each component, to establish equivalencies of transitive group actions.
The functor Aut yields an equivalence between framed lattices (π, δ) and groups Aut(π, δ), under
the transitive free actions of Aut(π, δ), tautological on the former and by conjugacy on the latter.
Quotienting by subgroups of the torsor group Aut(π, δ), we get weaker equivalencies between framed
lattices up to conjugacy and groups Out(π, δ), or between framed lattices up to conjugacy and
orientation reversal and groups Out(π, δ).

Finally, let us note that given a framed lattice (π, δ) up to isomorphism, there is a unique group
embedding Aut(π, δ) ⊂ Aut(π) up to conjugacy (at the target) and similarly for Out(π, δ) ⊂ Out(π).
Hence the different framings of π (its many forms) are given by those finite index subgroups.

Fuchsian representations. Consider a finite type Fuchsian group π and denote G = PSL2(R).
A representation ρ : π→ G can be described by considering a presentation for π, and then choosing
a matrix per generator which satisfy the required relations. Hence the space of all representations
Hom(π,G) is an algebraic subset in some Cartesian product GN which is smooth (actually it is an
affine variety but we shall wait until section 2.2 to study its algebraic structure). Let us compute
its dimension, starting with that of the underlying surface F0. The group G has dimension 3, so
loosely speaking we have 3 parameters per generator and 3 equations per relation. Put differently
this equals 3 times the deficiency of π(F0), that is the minimal difference between the numbers of
generators and relations 2g+ h− 1 = |χ0|+ 1 We deduce that the space of π1(F0)- representations
has dimension 3|χ0|+ 3, and torsion elements are uniquely determined by the center of rotation so
this adds 2s to the dimension of Hom(π,G) : the result only depends on π indeed. Now the group
G acts on the space of representations by conjugation at the target, but this action is not properly
discontinuous and the quotient is a singular algebraic set of dimension 3|χ0|+2s = 6g−6+3h+2s.

The subset F of Fuchsian representations in the space Hom(π,G) endowed with the compact-
open topology, is closed [Ota90, Proposition 53] and has non-empty interior. Moreover, it has two
connected components: one for each possible orientation on the quotient (algebraic distinguished by
comparing the maps induced on H2(π, δ)). The conjugacy action by G restricted to F is properly
discontinuous, this defines a G-principal fibration over the smooth algebraic set T(π) = F /G of
dimension 3|χ0| + 2s. This quotient space can be partitioned into a finite number of cells T(2g,h)
according to the homeo-type (g,h, c) of the quotients H/ρ(π), those are indexed by the partitions
2 − χ0 = 2g + h with h > 0 unless π cocompact. More precisely, each T(2g,h) has two connected
components T±(F) (one for each orientation), which are both homeomorphic to a closed ball (as
we shall see). Each component of T(2g,h) contains in its boundary 2h analytic subspaces of
lower dimensions, defined by the simultaneous vanishing of some peripheral traces. This defines a
stratification of F into a finite number of cells, whose local incidence combinatorics around a cell
(telling which cells belong to its boundary) are given by the formation of cusps, and whose adjacency
relations (which cells share a common cell in their boundaries) are dictated by the identification of
boundary components or splittings along non separating simple closed loops, yielding creation and
annihilation of handles. Finally, one can foliate each open cell in T(2g,h) by the 6g−6+2h+2s open
cells defined by fixing the trace (hyperbolic lengths) for the collars geodesics arround trumpets.
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0.3 Summary
Categorical equivalence. Consider the category whose objects are the based orbifolds without
boundary up to relative isotopy with respect to base points, and whose morphisms are the isotopy
classes of homeomorphisms preserving the orbifold structure. The full subcategory whose objects
are the based lattice orbifolds (F, x) up to relative isotopy forms a groupoid (full means we consider
all morphisms between the objects). Applying the based fundamental group functor yields an
equivalence to the category of all Fuchsian lattices (π, δ), with group isomorphisms preserving the
subset of conjugacy classes. The connected components of each groupoid is given by the type
(g,h, c), and the homology sequence of the pair H?(π, δ). In restriction to a given component, this
same functor yields an equivalence of torsors under the actions of Mod±(F, x) ' Aut(π, δ).

Moreover, the uniformization theorem provides an equivalence between complete hyperbolic
structures on F, which are better defined in terms of complete (G,H)-structures on orbifolds, and
conjugacy classes of discrete and faithfull representations of its Fundamental group F(π)/G. So
with this equivalence in hand, we then concentrate the study on the space of all Fuchsian lattices
π → G. We first identify the isomorphism type of the group π in terms of its homology groups,
then describe the embedding π→ G in terms of the long exact sequence in homology for the pair.

Finding the group. First the isomorphism type of the group π is uniquely determined by the
groups of Z-homology functor H?(π;Z) as follows. Either H2(π) = Z, in which case the lattice is
cocompact and then H1(π) = Z2g⊕Z/cj determines π as the free amalgam of Zµj∗Zλj∗Z/cj modulo
a relation of the form

∏
[λj,µj] =

∏
τj. In particular any finite type abelian group with even rank

can be realized as the abelianization of a cocompact Fuchsian lattice. Otherwize H2(π) = 0, in
which case the lattice has at least one end card(δ) = p > 0, and then H1(π) = Z2g+h−1 ⊕ Z/cj
determines π as the free amalgam of Zµj ∗Zλj ∗Zδj ∗Z/cj modulo a relation of the form

∏
[λj,µj] =∏

δj
∏
τj. In particular any finite type abelian group can be realized as the abelianization of a non-

cocompact lattice. Hence the lattices π with the rational homology of 2-spheres (H2(π;Q) = Q and
H1(π;Q) = 0, ergo finite abelianization) have type (g = 0,h = 0, cj), and are isomorphic to ∗Z/cj
modulo c1 . . . cj = 0. They can also be described by asking that the manifold G/π = UF is a rational
homology 3-spheres. The lattices with trivial rational homology have type (g = 0,h = 1, cj), they
are uniform but not cocompact, and isomorphic to π = ∗Z/cj.

Finding the type. CHANTIER jusque fin de section Then we use the long exact sequence
in homology of the pair (G,π). The relative homology groups H?(G,π) correspond to those of the
quotient 3-manifold G/π which is the unit tangent bundle of the corresponding orbifold H/π.

blablalba il faut que je comprenne l’homologie d’un résea dans un groupe de Lie et du quotient
pour bien formuler le nombre de bouts purement en terme de la représentation discrète

In particular the group is uniform when it is a homology sphere blabla
and correspond to the orbifolds for which h = 0 or h = 1 and g = 0.
lift intersection pairing on π/[π,π] to π and universal central extension

Studying the moduli. Now fix the embedding type π ⊂ G. This cuts out two connected
components F(2g,h) in the space of Fuchsian representations F(π) ⊂ Hom(π,G), projecting to a
pair of open balls T(2g,h) in the base T(π) = F(π)/G of the principal G-fibration. Each components
T(2g,h) forms a torsor under the action Out(π, δ), the quotient is the moduli space of hyperbolic
structures on the oriented lattice orbifold F, and its study will occupy us in the sequel.
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0.4 Geometric intersection pairing over the group
In this subsection, we consider a lattice Fuchsian orbifold F with type (g,h, c) up to isotopies
relative to the ends, which is equivalent to a framed lattice (π, δ) up to conjugacy and orientation
reversal with δ of cardinal h, we could denote this (π, δ)/π. we shall abusively denote this (π, δ).

The geometric intersection of h-loops on F is invariant under the modular group so it defines a
pairing i : π×π→ N which is invariant under the diagonal action of the framed outer automorphism
group Out(π, δ) (but not the full outomorphism group in general). We explain how to recover the
framed lattice (π, δ) up to automorphism, and the isormorphism type of Mod±(F) = Out(π, δ) from
the knowledge of the intersection pairing i. Again, this comes from a equivariant with resepect to
the natural action of Mod±(F) = Out(π, δ). Finally, we will try to compute i solely in terms of the
algebraic structure of the framed lattice.

Note that we could extend this to an actual symmetric bilinear form on the real vector space over
the base π of unoriented h-loops, and discuss the properties of the infinite dimensional quadratic
space (R(π), i(·, ·)); but we shall leave most of the linear analysis for subsection 1.3 on geodesic
currents, and stick to the combinatorial point of view for now.

Essential, peripheric and torsion classes. A loop γ is unessential in F when it is homotopic
to a point (smooth or singular) or hole ; equivalently when tr(ρ(γ)) 6 2 for some representation
ρ ∈ F(F). Those are precisely the loops which have finite orbits under the modular group. The non-
trivial h-loops partition themselves between essential, peripheric and torsion classes (respectively
mapping to hyperbolic, parabolic and elliptic matrices under ρ ∈ FF).

Now consider the pairing i on π. Note that its isotropy elements correspond to the simple loops,
which must in particular be primitive. By definition, the pairing detects unessential loops as those
α which intersect every distinct β trivially. It also detects the unessential and primitive classes as
the kernel of the pairing : the loops γ such that i(γ, ·) vanishes on π. Those classes consist in the
peripheral classes δ along with trivial and primitive torsion classes. Now assume we also know π:
the trivial and torsion classes can be distinguished algebraically from the peripheral ones, so we
know the set of inverse pairs of primitive peripheral conjugacy classes δ ⊂ π. But the algebraic
(first homology) structure of π determines an orientation for the δj up to simultaneous inversion.

Therefore, it is equivalent to know (π, i) and (π, δ), both up to conjugacy and inversion, and
those sets admit equivariant actions from Out(π, δ).

Recovering the modular group from the intersection. Now we explain why the only data
of π and its pairing i, forgetting π and its group law up to conjugacy, determine the isomorphism
type of the modular group Out(π, δ). This is reminiscent to the fact in Lie group theory that the
automorphism group of a simple Lie group is the isometry group of its Killing form.

Indeed, one may use the pairing to construct the so called curve-complex which is a finite di-
mensional cell-complex whose k-faces correspond to the k + 1-tuples of mutually non intersecting
loops (in particular the 0-faces, called vertices, correspond to simple loops). Its symmetries corre-
spond to the bijections of π which preserve the pairing, they form the orthogonal group O(π, i(·, ·))
of the quadratic space. A deep theorem of Ivanov [Iva97] says that when F is a closed surface
manifold, the automorphism group of that complex is precisely the outer automorphism group
Out(π) = Mod±(F). It has been extended by Luo to the holed manifold case [Luo00], except
the result has a couple of exceptions with low |χ|. Thus in absence of torsion, it is true that

12



O(π, i) = Out(π, δ). It is not hard to deduce the same result for a general lattice Fuchsian orbifold
whose underlying surface has negative Euler characteristic.

blabla
Thus knowing i : π × π → N recovers the abstract group Out(π, δ) and its action on simple

conjugacy classes. But there is only one way to extend it to an action on the set of all conjugacy
classes in such a way that it descends from an action by automorphisms of the group considered up to
inner automorphisms. Hence knowing (π, i) and π up to conjugacy will recover Out(π, δ) ⊂ Out(π).

Cyclic order structure and orthogonality. We know how the different orbifold structures are
related to one another from the combinatorics of the aforementioned cellular decomposition for the
discrete and faithful representation variety into F(F), however it is not clear how to compare the
different intersection functions. Let us hint to an approach for understanding the combinatorics of
the intersection pairing in terms of the cyclic order structure derived from a Fuchsian representation.

Since F has no boundary, a representation ρ ∈ F(F) provides a quasi-isometric embedding of
π in H (by considering the orbit of an arbitrary point), and therefore an homeomorphism between
their Gromov boundaries [π ' S1 (see [GlH90] for the Gromov boundary of a hyperbolic group).
Note that π maps into the set of unordered pairs of distinct boundary points ([π × [π − ∆)/ ± 1
by considering the doubly-infinite periodisation of a conjugacy class. This in turn provides a cyclic
order structure on [π and thus on π. This cyclic order structure encodes the orthogonality relation
defined by the pairing i : π× π→ N, that is the property of having disjoint representatives.

One can also formulate this by composing the representation ρ : π → PSL2(R) → Homeo(S1)
to obtain an action of π on the circle for which every essential element acts with two fixed points.
Distinct primitive essential transformations correspond to disjoint loops if and only if their fixed
points define unlinked pairs on the circle. When the elements are related by a power (in particular
equal or inverse), the order structure does not determine their orthogonality relation so easily. Still,
the order structure determines the pairing since any set of distinct two by two disjoint loops (which
we cannot assume simple a priory) with maximal cardinal is necessarily composed of 2|χ0|+1−s−g
simple loops, and thus determines g. This argument is far from computational : it seems hard to
determine intersection numbers from the cyclic order or from the orthogonality relation.

Intersection pairing as killing form. We finally show how to express the intersection function
i : π × π → N purely in terms of the group structure with peripheral data. This enables us to
deduce some functorial properties and understand how the intersection function behaves under
group morphisms (especially those which correspond to orbifold covers in the geometric setting).
Again, we are inspired by the Killing form on a simple Lie group, which is given by the trace of the
composition between the adjoint actions on the Lie algebra.

For this, consider the graded Lie algebra given by the descending central series gr(π) =
⊕

grk
where grk = πk/πk+1 and πk denotes the normal subgroup of π generated by commutators of
depth k like [α0, . . . [αk−1,αk] . . . ]. Its addition of classes follows from the group product of their
representatives whereas the Lie bracket is given by their commutator [·, ·] : gri× grj → gri+j. The
group π acts by conjugation on its graded Lie algebra gr(π) and this gives a linear representation
ad : π → End(gr). One may thus speak of the composition adα ◦ adβ, and provided this is
traceable then one can compare its trace to the intersection of their conjugacy classes.

Question 1 (Killing form versus intersection). tr(adα ◦ adβ) = 2 · i(α,β)

13



NONONON LE GROUPE EST RESIDUELLEMENT NILPOTENT LA FORME DE KILLING
EST NULLE

Goldman Poisson algebra as Lie algebra of the modular group REVOIR LE MAIL EN-
VOYE A JULIEN DEPLACER CE PARAGRAPHE EN SECTION POISSON

hey mais est ce que les différents F ne correspondraient pas (grace au tangent
unitaire) avec les différentes classes d’isomorphismes d’extension centrales universelles
de π ? Il faut préciser et faire intervenir les données pérphériques parce que tel quel il
y a unicité de l’extension centrale à unique iso près. Par exemple dans le diagramme on
peut rajouter des morphismes provenant des sous groupes périphériques (des cercles en
bas et des tores en haut). Si oui une fois correctement formulé alors on doit pouvoir
déduire l’intersection de l’extension centrale (puisqu’elle est lisible étant donné la
surface), or clairement l’extension centrale (groupe fonda du fibré unitaire tangent)
encode tout ce qu’il faut pour pour l’enlacement, hehehe !! Mais alors... ce ne serait
par ailleurs pas surprenant que la positivité de l’enlacement découle des phénomènes
de positivité dand l’algèbre skein du tangent !!!
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1 Teichmüller space, measured laminations, geodesic currents
In this section, F is a smooth oriented connected surface of genus g ∈ N with h ∈ N circular
boundary components, and negative Euler characteristic χ = 2 − 2g − h. We label the boundary
components from 1 to h. Denote π its fundamental group, F̃ it universal cover; and G = PSL2(R)
the group of orientation preserving isometries of the hyperbolic plane H. Finally, PMod±(F) is the
pure modular group which fixes each boundary component, and PMod(F) its index two subgroup
of orientation preserving mapping classes, the latter being generated by Dehn twists.

For a closed surface, the Dehn-Nielen-Baer theorem provides an isomorphism between the full
modular group Mod±(F) and the outer automorphism group Out(π), sending Mod(F) to the sta-
bilizer of the fundamental class in H2(π;Z) ' Z. In presence of boundary, one must consider the
subgroup of outer automorphisms fixing the conjugacy classes δj which correspond to the boundary
components (or simultaneously permuting them all with their inverses).

1.1 Teichmüller space and length functions
Teichmüller space T(F) consists of isotopy classes of complex (or conformal) structures on F.
Precisely, consider the space of complex markings, which are smooth homeomorphisms m : F→ X
to a Riemann surface X with boundary, up to the equivalence relation given by m1 ∼ m2 whenever
m2 ◦m−1

1 : X1 → X2 is isotopic to a biholomorphism.
By Alfors-Bers, every conformal structure contains a unique complete Riemann metric of con-

stant curvature −1 with geodesic boundary components of finite positive length. We call this a
hyperbolic metric on F, and one can similarly define the points of Teichmüller space T(F) as the
isotopy classes of markings m : F→ X to a hyperbolic surface with geodesic boundary.

Being locally isometric to the hyperbolic plane, a hyperbolic metric is equivalent to a (G,H)-
structure in the sense of Klein and Thurston [Thu97]. The associated developing map Dev : F̃→ H
and holonomy representation ρ : π → G, are well defined up to the action of G at the target,
respectively by translation and conjugation. Such hyperbolic structures are thus uniformized as
the quotient F̃/ρ(π) of a connected and simply connected closed subset with geodesic boundary in
the hyperbolic plane, under the properly discontinuous action of a discrete subgroup of isometries
uniquely defined up to conjugation (one may alternatively restrict to the so called convex core inside
the complete quotient H/ρ(π), of which the interior is a retract by deformation). Notice that the
developing map is surjective only when the surface is closed.

We just anachronistically recovered from Alfors-Bers the Klein-Poincaré-Koebe uniformization
theorem, giving an equivalence between isotopy classes of hyperbolic structures on F and conju-
gacy classes of (necessarily faithful and discrete) representations ρ : π → G with quotient H/ρ(π)
homeomorphicic to F. Consult [dSG18] to know more. We shall come back to this setwize identi-
fication in a moment after describing the topology (and symplectic structure) on T(F) thought as
parametrizing isotopy classes of hyperbolic structures.

We may partition T(F) into strata according to the length of the labelled boundary components.
For L = (L1, . . . ,Ln) ∈ (R∗+)h, denote T(F,L) ⊂ T(F) the subset of hyperbolic structures on F whose
(labeled) geodesic boundary components have lengths Lj ∈ R∗+; together they form a foliation
by submanifolds. The pure modular group PMod(F) acts by homeomorphisms m 7→ m ◦ ϕ on
Teichmüller space T(F), preserving each leaf T(F,L). This properly discontinuous actions has finite
stabilizers, and the quotient orbifold M(F) is the moduli space of hyperbolic metrics with geodesic
boundaries, containing the subset M(F;L) of those with prescribed boundary-lengths.
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Fenchel-Nielsen coordinates. A pants (or three-holed sphere) decomposition of F, consists of
a simple i-multiloop γ with d = 3g− 3+h distinct components γj (that is a disjoint collection of d
homotopy classes of simple loops non-isotopic to one another) which are non trivial or homotopic to
the boundary. An Euler characteristic count shows indeed that the complement is a disjoint union
of pants. The following diagram represents two pants decompositions of a genus 2 surface.

Recall that on a hyperbolic surface X with geodesic boundary, every essential h-loop (non-trivial
homotopy class of closed loop) has a unique geodesic representative. Now fix L ∈ (R∗+)h, and let us
explain how to recover a hyperbolic metric X ∈M(F;L) from its restriction to the hyperbolic pants
defined by cutting along the geodesic representatives in γj, along with and some additional gluing
parameters.

First notice that in a hyperbolic pair of pants there are unique shortest geodesic arcs connecting
the boundary components, so every boundary component has a privileged pair of points (those
closest to each of the two others), and by symmetry they must be antipodal (half way distance
across the geodesic boundary). Out of the two, mark the point which is closet to the shortest of the
other boundary components, this choice is well defined for X in a dense open set of M(F;L), and
uniquely extends by continuity. As one glues two pants along a boundary component, the angle
θj ∈ R/2πZ is defined as the renormalized distance between those privileged points. The metric X
on F is uniquely determined by the metric on each pair of pants along with the angles θj ∈ R/πZ
at which they are glued.

Now it is a amusing to show that there is a unique hyperbolic metric on a pair of pants with
prescribed lengths l1, l2, l3 on the boundary. For this one cuts along the shortest geodesic arcs
connecting the boundary components to obtain a pair of isometric rectangular hexagons of which
three non-adjacent sides of lengths are given by lj/2, and there is a unique such hyperbolic hexagon
up to isometry. Consequently, the Fenchel-Nielsen coordinates (lj, θj) associated to the pants
decomposition γ uniquely determine the hyperbolic metric X ∈M(F).

Finally, by lifting the angles θj to the real line, one obtains a global coordinate system on
T(F,L), and therefore a homeomorphism with (R∗+×R)d for d = 3g− 3+h. By letting the lengths
of the boundary components vary in R∗+ we obtain coordinates T(F) which is thus homeomorphic
to an open ball of dimension 3|χ|. Note that every pants decomposition yields such coordinates, but
the graph over the vertex set of pants decompositions whose edges correspond to some elementary
moves (see A.1) is connected, and the elementary coordinate changes from a Fenchel-Nielsen system
to a neighboring one preserve some geometric features, like the symplectic form

∑
j dlj ∧ dθj...
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Weil-Peterson symplectic form. Wolpert [Wol82] expressed the Weil-Peterson symplectic form
on Teichmüller space in terms of the Fenchel-Nielsen coordinates associated to any pants decompo-
sition: ωwp =

∑
dlj ∧ dθj. This enabled Goldman to show [Gol84] that ωwp is invariant under

the modular group, and thus descends to moduli space.
Mirzakhani then introduced her topological recursion method [Mir07a] to compute integrals

over moduli spaces against the volume form volWP = ωd/d!, and applied it in two ways. She first
computed the volumes Vg(L) of moduli spaces M(F,L) as a (symmetric) polynomial in the Lj of
degree 2d = 6g − 6 + 2h, and related its coefficients in [Mir07b] to certain intersection numbers
(line integrals of Chern classes for the cotangent bundle over moduli space).

This enabled her to integrate other functions over moduli space M(F;L), such as the number of
loops in a given modular group orbit Mod(F) · γ whose geodesic representative has length smaller
than L0. Again, this is a polynomial expression in L0 whose coefficients depend both on volumes
Vg′(L ′) of smaller moduli spaces and on constants associated to the class γ.

Length functions Recall that on a hyperbolic surface X, an essential h-loop has a unique geodesic
representative, and that unoriented h-loops in F correspond to the set π conjugacy classes up to
inversion. Thus we can define for every α ∈ π, its length function lα : T(F)→ R∗+ which associates
to m : F → X the length of the unique geodesic homotopic to m(α) ⊂ X. This is related to the
well defined value of the trace tα(ρ) = tr ρ(α) for the representations ρ corresponding to m, by the
formula |tα(ρ)| = 2 cosh(lα(m)/2).

Denote Σ the set of all unoriented simple loops in F, including those parallel to the boundary.
Thurston showed that given a pants decomposition γ, the Fenchel-Nielsen twist coordinates θj were
uniquely determined by the lengths of the γj together with an additional set of 6g−6 simple loops.
In particular the lengths of all simple loops determine the hyperbolic metric (compare [Ota90] for an
analog in variable negative curvature). More precisely (see [FLP79, FLP12]) the length functional
m 7→ (lα(m))α∈Σ defines a proper embedding of T(F,L) in RΣ with product topology, and after
composing with the natural projection RΣ → P(RΣ), it maps homeomorphically onto an open ball
of dimension 6g− 6+ 2h. One has a similar results for T(F).

Representations. Recall the Klein-Poincaré-Koebe uniformization theorem as it was described
in the first paragraph, giving an equivalence between isotopy classes of hyperbolic structures on F
and conjugacy classes of representations ρ : π→ G with quotient H/ρ(π) homeomorphic to F. We
may improve this setwize identification to a topological (and analytic) one. Consider, in the space of
representations Hom(π,G) endowed with the compact-open topology, the subset F(F) of those ρ for
which the quotient H/ρ(π) is homeomorphic to F. The group G acts on F(F) by conjugation at the
target of ρ, and the quotient F(F)/G has two connected components distinguished by the orientation
induced on the quotients H/ρ(π). One of those may thus be identified with T(F). One can make
analog statements with prescribed boundary lenghts (or in presence of orbifold singularities and
cusps) while fixing the traces for peripheral conjugacy classes.

The dimension count 3|χ| for Teichml̈ler space can now be interpreted as follows. The appropriate
notion of dimension for a finitely presented group is the deficiency, that is the minimal difference
between the number of generators and relations among all finite presentations. It is not hard to
show, distinguishing the case of closed surfaces to those with boundary, that π1(F) has deficiency
|χ| + 1. The group G has dimension 3. So loosely speaking, the space of representations has
dimension 3|χ|+ 3 and considering them up to conjugacy leaves 3|χ| parameters.
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1.2 Measured geodesic laminations
Recall that in presence of boundary, the various notions of loops may be adapted to include proper
arcs whose boundary points belong to the boundary of F. The sets for these dual notions will
primed: the dual states Ψ ′ are simple multiloops or arcs up to homotopy preserving the boundary
(so one can get rid of arcs and loops homotopic into the boundary of F).

Measured geodesic laminations. A geodesic lamination on a hyperbolic surface X is a closed
subset partitioned by complete simple geodesics (including those ending in the boundary). The
most elementary geodesic lamination consists of (the geodesic representative for) a dual simple
loop; a little more general are the dual essential states. But typically, a geodesic lamination Λ
contains a non countable set of non closed geodesics, each of them being dense in Λ. A transversal
cut would then look like a Cantor set. Here is a graphical suggestion of a geodesic lamination in
the genus two closed surface, along with its lift to the hyperbolic plane.

A transverse measure for a geodesic lamination Λ is a family of positive Radon measures defined
on every free arc k : [0, 1]→ X transverse to Λ, which is compatible with restrictions to subarcs, and
equivariant with respect to homotopies of k respecting the intersection with Λ. This equivariance
property implies that the measures have support included in Λ. A measured geodesic lamination λ
consists of a geodesic lamination Λ together with a fully supported transverse measure.

For a lamination given by a simple geodesic arc or loop ψ and a weight r ∈ R, define the
measured lamination which assigns to any subset of a transverse arc, the counting measure of its
intersection with ψ multiplied by r; some call this a weighted simple loop. A little more generally,
a state ψ with (any real multiple r of) its counting measure yields a measured lamination (recall
from the introductory notations that the components of ψ need not be homotopically distinct, thus
it may have several parallel copies of the same loop ψj and we take this into account by multiplying
the counting measure supported on ψj as many times as it occurs). This map, from unweighted
essential states (with r = 1) to measured laminations, is injective.

We note ML(F) the set of measured geodesic laminations endowed with the weak ∗ topology
whose test functions are the continuous k : [0, 1]→ R with compact support contained in a generic
geodesic free arc (i.e. transverse to all simple complete geodesics, or equivalently, not contained in
any simple complete geodesic). Its contains the subspace ML(F,L) of those which attribute the
measures Lj > 0 to the boundary components. Denote PML(F) and PML(F,L) the corresponding
projectivized sets. When a statement holds with or without prescribed data on the boundary, we
omit F and L from the notations.

18



Piecewize linear topology. Inspired by Fenchel-Nielsen coordinates, Thurston introduced train
tracks [Thu02, chapter 8] to provide the charts for a piecewize linear structure on ML(F). Let us
say, without delving into their definition, that to every train track corresponds a linear chart, which
is the positive cone over a closed polyhedral cell in R3|χ| together with a linear coordinate system,
and they are related by piecewize linear transition maps.

This yields a stratification of ML(F) according to the dimension of these open cells, which
depend on the combinatorics of their associated train tracks. The maximal dimension is attained
for cells corresponding to the so called maximal train tracks : the union of their interior is open and
dense. Moreover, in these charts the ML(F,L) are defined by some linear conditions imposed by the
measures for the boundary components, and together they form a foliation of ML(F) by piecewize
linear submanifolds. Finally, the piecewize linear transition maps between train track coordinates
have integral coefficients, so one can speak of the integral points ML(F;Z): those are precisely given
by the halves 1

2ψ of essential dual states ψ ∈ Ψ ′ with trivial homology class [ψ] ∈ H1(F,∂F;Z/2).
This piecewize linear integral structure only depends on the topology of F, not on the hyperbolic

structure used to speak of geodesic laminations. In particular the topology but also the stratifica-
tion, foliation by piecewize linear submanifols and integral points are all intrinsic to ML(F) without
any reference to a hyperbolic metric. Moreover it is preserved by the modular group action. A
clear exposition of the topology on measured laminations from that perspective has been written
out by Hatcher in [Hat88], and [PH92] gives a thorough investigation of train track combinatorics.

Compactifying Teichmuüller space. The aforementioned injection from Ψ ′ intoML composed
with the projectivization map to PML remains injective. We may also inject Ψ ′ into RΣ by sending
ψ to the intersection functional (i(ψ,α))α∈Σ, and again this remains injective after projection into
P(RΣ). Similarly, the space ML embeds properly in RΣ by λ 7→ (i(λ,α))α∈Σ where i(λ,α) denotes
the minimal λ measure of transverse representatives for α; the composition ML→ P(RΣ) remains
an embedding. After those embeddings into P(RΣ), the image of Ψ ′ has completion that of ML, in
particular the weighted states QΨ ′ are dense in ML; see [FLP79, FLP12] for proofs. Moreover, as a
weighted state r ·ψ converges to λ ∈ML, the intersection function r · i(ψ,k) between the weighted
state and any arc k transverse to λ (like a non-simple closed loop) tends to the λ measure of k
denoted i(λ,k). In particular, the intersection function between weighted simple loops and states
extends continuously to a symmetric bilinear pairing on the cone of measured laminations.

Now recall Thurston’s proper embedding of T into P(RΣ). After projectivization, we obtain
an homeomorphism from PML(F,L) to a 6g − 7 + 2h dimensional sphere in P(RΣ) which realizes
the disjoint compactification of Teichmüller space T(F,L) into a closed ball. The same goes for
the pair (T(F),PML(F)) which gets map homeomorphically to (B3|χ|,S3|χ|). This is Thurston’s
compactifiaction of Teichmüller space by projective measured laminations, and it is equivariant
with respect to the modular group action. Thurston proved that a sequence of elements mj in T(F)
converges to a projective measured lamination λ if and only if, for every pair of simple loops α1
and α2, such that i(λ,α2) 6= 0, the ratio of their m-lengths converges to ratio of their intersection
numbers with λ:

lim
j→∞

lmj
(α1)

lmj
(α2)

=
i(λ,α1)

i(λ,α2)

This last property will play a key role when, following Bonahon [Bon88], we shall revisit Thurston’s
compactification of Teichmüller space from the point of view of geodesic currents.

Thurston’s compactification of T by ML in RΣ also coincides with (a component of) Morgan-
Shalen’s compactification of the character variety as we shall briefly explain in 2.2 following [Ota12].
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Thurston’s pairing and volume. Using train tracks, one may define as in [PH92, section 3.2]
a symplectic form ωTh named after Thurston over ML(F,L) : that is a piecewize-linearly varying
family of non-degenerate skew-symmetric bilinear pairings on the tangent spaces above the interior
points of maximal train track linear charts, whose monodromy around codimension one cells is
trivial (this accounts for usual the closure condition). The actual construction of ωTh is derived
from the algebraic intersection product in homology: in a chart corresponding to some train track
t, by pulling back the symplectic structure on the first homology group H1(Ft;R) of the double
cover Ft ramified at one point in each complementary region of t.

Question 2. Can we formulate a precise relationship between the symplectic structures on ML(F)
and H1(F,R) (going further than merely observing that one is constructed using the other)?

The volume form associated to this symplectic pairing yields Thurston’s measure volTh which
can actually be defined only in terms of the piecewize linear integral structure of ML(F), forgetting
about the intersection pairing. Indeed, Masur showed that up to scaling, there is only one M(F)-
invariant measure on ML(F) in its Lebesgue class. Therefore it is proportional to the Borelian
measure which assigns to every open set U, the limit as r → ∞ of r3|χ| times the cardinal of the
set r · U ∩ Ψ ′ of integral measured laminations in the dilated set r · U. The analog statement for
the leaves ML(F,L) holds provided this time that the Lj are integral : one needs enough integral
points, a necessary and sufficient condition being that the Ψ ′ be dense in PML(F,L).

Symplectic pairings : from Weil-Petersen to Thurston. Let us now say a word about the
relation between the piecewize linear topology with symplectic pairing on measured laminations,
and the symplectic topology of Teichmüller space. There are two ways to think about this : locally
and at infinity. Indeed the projective space of measured laminations PML can be (topologically)
identified with the boundary of T, but also with its projective (co)tangent spaces as we shall briefly
explain; this is reminiscent of what happens in hyperbolic geometry. Concerning the relationship
at infinity, let us just mention that Papadopoulos and Penner [PP91] showed that when F has at
least one boundary component, the symplectic pairing ωTh can be recovered as a limit of ωwp.

We now turn to the local relationship. The cotangent space at a point X ∈ T(F,L) can be identi-
fied with measured geodesic laminations as can be seen by transiting through quadratic differentials
and measured foliations. Also, Thurston [Thu98] provides an explicit embedding of PML(F,L) into
T∗m T(F,L) as the boundary of a convex polyhedron containing the origin in its interior, through
the map dm log i(λ, ·). Here i(λ, ·) is the length function over Teichmüller space, which we have
defined for simple loops, but extends by linearity and continuity to all measured laminations. The
earthquake map defines a similar embedding of PML(F,L) into the tangent bundle of T(F,L); by
sending a measured lamination λ to the unit speed potential vector field Eλ for the Weil-Petersen
symplectic pairing over Teichmüller space, associated to the length function lλ. The unormalized
earthquake map ML(F) → TT(F) is equivariant with respect to Thurston’s and Weil-Petersen’s
symplectic pairings.

Note that one can enrich the identification between the space ML(X) of geodesic measured
laminations on a hyperbolic surface X and its cotangent space TX T by considering various struc-
tures depending on X. This includes for instance the differentials of length functions associated to
measured laminations.
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1.3 Geodesic currents and intersection forms
Bonahon [Bon88] taught us how to recast the compactification of Teichmüller space by measured
laminations in terms of geodesic currents. The object of this subsection is to summarize this picture
for closed surfaces with an eye towards the more general case of finite type Fuchsian orbifolds. Recall
from section 0 and keep in mind that a Fuchsian orbifold F modulo isotopy is equivalent to a pair
(π, δ) up to conjugacy, and that such a pair thus defines an intersection pairing i : π× π→ N.

Motivation. Consider the vector space Rπ, of real functionals over the set of all unoriented h-
loops in F, with the product topology; this extends the product vector space RΣ considered in
previous subsection. The proper embedding of Teichmüller space T(F) → RΣ lifts to all of Rπ by
extending the length functional to all loopsm 7→ (lm(γ))γ∈π; again its projection to P(Rπ) remains
an embedding. We may consider, dual to the obvious injection of π by the indicator function, the
map given by the geometric intersection pairing α 7→ i(α, ·) for α ∈ π ′ and its projectivization
π ′ → PRπ, which are both injective. In particular, the image of dual simple loops i : Σ ′ → PRπ has
completion a copy of projective measured laminations embedded by the projectivized intersection
functional λ 7→ i(λ, ·). After those identifications, the sphere of measured laminations realizes the
disjoint compactification of Teichmüller space into a closed ball PMLtT; a marked metric m
converges to a projective measured lamination λ if and only if for every pair of loops, the ratio of
their m-lengths converges to the ratio of their intersection numbers with λ (provided it is defined).
We may similarly consider the completion of the image of all h-loops : this yields the space of
geodesic currents C on which the intersection pairing can be extended by continuity.

This introductory discussion shows that that the projective space of real functionals PRπ is very
handy, as it brings together Teichmüller space, projective measured laminations and loops through
their length and intersection functionals. Still it remains quite cumbersome as it does not take
into account the geometry of π since we have initially considered its discrete topology. Moreover
the relation between loops and metrics, intersection and length, remains quite mysterious, and it
is hard to assess how big is C(F); for instance does it contain Teichmüller space, is it all of Rπ ?
Bonahon’s approach deals with both questions providing a unified account for metrics, laminations
and loops by adding some topological structure to the space of closed geodesics π. More precisely,
this topology will be inherited by its injection as a subset in the space of all geodesics. After
presenting this, we shall come back to this naïve functional approach, and explain how a systematic
reflection on the intersection pairing over π can recover and shed light upon the space of currents.

Remark. Let us make an elementary remark belonging to the realm of topological vector spaces, in
order to emphasize why the functional point of view may be called naïve. The space of continuous
maps π → R with compact open topology when π is given the discrete topology, corresponds to Rπ
with product topology : that is the space of real functionals we have been considering. When the
topology considered at the source π is made coarser (with less open and closed sets but more compact
sets and converging sequences), the space of continuous functions becomes smaller, and so does the
associated topological dual vector space.

For instance if we endow π with the cofinite topology (whose closed sets are the finite sets), then
the continuous functions are those with finite support, and they form the vector space R(π) =

⊕
πRγ

over the countable base π of all h-loops (the compact open topology coincides here with the direct
limit topology). One may consider intermediary spaces between R(π) and Rπ, either by considering
another meaningful topology on π as we shall following Bonahon, or by completing the former with
respect to a natural norm derived from the intersection paring on π.
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Note that the commonly accepted wisdom in functional analysis according to which reducing
a topological vector space enlarges the topological dual is incorrect if interpreted literally (as can
already be seen in the finite dimensional case). Indeed if V → W is a continuous injection, then
we have the correspondingly dual continuous surjection W∗ → V∗. What may happen however is a
competition between enlarging the space and coarsening the topology and this is often the case when
considering the “natural topology” on the space of functions over a given space.

For instance, one may consider on a fixed a closed smooth manifold M, the space of smooth
functions C∞(M,R) with natural Fréchet topology (measuring the partial derivatives), and the larger
space of continuous functions C0(M,R) whose natural topology is given by the supremum norm. The
dual of the former (distributions) is much larger than the dual of the latter (Radon measures). But
if we pull back the supremum topology on C∞(M)→ C0(M), then the topological dual space becomes
smaller in comparison, and is now included in the space of Radon measures (actually equal since
smooth functions are dense in continuous ones).

Geodesic currents. In this paragraph which is a subset of [Bon88], F is a closed surface. We
first make sense of a topological space containing all unoriented complete hyperbolic geodesics
in F independently on the metric. For this we define a topology on the Gromov boundary [F̃
of the universal cover of F. Fix L an array of lengths for the boundary components of F. The
developing map F̃→ H associated to any metric X ∈M(F,L) embeds the universal cover of F into
the hyperbolic plane. This defines a hyperbolic metric on F̃ and identifies its Gromov boundary [F̃
with a subset of [H = S1. When F has no boundary [F̃ = S1, otherwise it is a cantor set. Two such
metrics define hyperbolic structures on F̃ which map to one another (using developing maps) by a
π-equivariant quasi-isometry. Thus the topology (and the the Hölder structure [GlH90]) induced on
the Gromov boundary [F does not depend on the chosen metric (but the differentiable one does).

Now let G(F̃) = ([F̃ × [F̃ − ∆)/(Z/2) be the space of unoriented pairs of distinct points in
the Gromov boundary of F̃, which identifies with the space of unoriented geodesics on X̃ for any
hyperbolic structure. When F is closed, G(F̃) is homeomorphic to a Möbius band, otherwise it
is some kind of Sierpinski carpet inside a Möbius band. Following Bonahon [Bon88], we define
a geodesic current on the surface F as a π-invariant positive Radon measure over G(F̃) (Radon
means Borel, locally finite and regular). The set C(F) of geodesic currents on F is endowed with
the (metrizable) weak ∗ uniform structure given by the family of semi-distances df(α,β) = |α(f) −
β(f)| for continuous functions f : G → R with compact support. This makes it into a complete
space. In other terms, the signed π-invariant Radon measures, which are formal differences in C(F),
correspond to the dual of the space of π-invariant continuous functions on G(F̃).

Any primitive h-loop α in F lifts to a π-invariant set in F̃ and summing the Dirac measures
at each of its elements defines a geodesic current. To the n-th power α, we associate n times
that measure. One could also consider weighted h-loops rβ and the corresponding multiples of the
associated Dirac measures. This injection from the set R+π of weighted h-loops into C(F) has a
dense image. The intersection form on R+π extends to a continuous symmetric bilinear function
i : C(S)× C(S) → R+. Bonahon then shows how to embed properly Teichmüller space T(F) in the
space of currents C(F) through the Liouville current λm associated to a marked hyperbolic metric
m : F → X. Instead of recalling its usual definition, we present another construction of the λm
based on Thurston’s idea of a random geodesic which helps to understand the relation between the
embeddings of T(F) and R+π. Choose a random vector in the unit tangent bundle UX according
to the measure induced by the volume form, and consider the length t geodesic arc launched in that
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direction. If we close it up by any segment whose length is bounded the diameter of the surface
(say the shortest) we obtain a homotopy class which pulls back by m to give an element αt ∈ π.
Then the weighted loop αt renormalized by its length lm(αt) converges almost surely as t→∞ to
the Liouville current λm renormalized by the volume π

√
|χ| of T1 X. As usual, this map projects

to an embedding T(F) → PC(F). He also embeds the space of measured laminations ML(F) in
C(F), the idea is more natural (and was the starting point in his circle of ideas) it is not to difficult
to interpret a measured lamination as a measure on the space of geodesics. Of course, one may
projectivize in PC to recover Thurstons compactifiction of Teichmüller space.

The intersection form evaluated on loops or measured laminations α,β gives their geometric
intersection number i(α,β); on a marked hyperbolic metric m and a loop or a measured lamination
α it gives the length lm(α) (after composing by the marking); and between two marked metrics
m,m ′ it is less than 2π|χ| with equality if and only if m = m ′. Moreover, the space of measure
laminations is the null cone of the intersection form: i(α,α) if and only if α ∈ML(F). This picture
looks very similar to the hyperboloid model in Minkowski space and its projectivization to Klein’s
ball model : the quadratic form has unit level surface a double sheeted hyperboloid, and restricts
to the tangent space defining a constant negative curvature Riemannian metric; this projectifies
to Klein’s ball model. The isotropy cone contains the rays asymptotic to the hyperboloid, and
projects to the boundary sphere. Bonahon pushed this analogy until he understood how to recover
the Weil-Petersen metric using the intersection form i.

Back to the functional approach. If we endow π with the coarsest separated topology, that is
the cofinite topology (whose closed sets are the finite sets), then the continuous functions are those
with finite support, and form the vector space R(π) =

⊕
πRγ over the base π of all h-loops. Its

topological dual vector space with weak topology corresponds to the product Rπ, which is the space
of real functionals we have been considering. We may recover the intermediary space of geodesic
currents by completing R(π) appropriately (instead of varying the topology as we have just done).

Indeed, the intersection pairing on the set of h-loops extends to a continuous symmetric bilinear
form on the vector space R(π). When the orbifold F is a closed manifold, that is when H2(π;Z) 6= 0,
the restriction of i(·, ·) to the codimension one subspace over the base of non trivial h-loops is non-
degenerate. More generally it has kernel the subspace generated by unessential unoriented loops.
Hence a loop which is neither trivial, encircling a conical singularity or hole, must be essential, and
denoting $ the set of essential loops, we have a direct sum decomposition R(π) = R($) ⊕ Rh+s+1

the right factor is precisely the kernel of the intersection form i, which therefore restricts to a non-
degenerate symmetric bilinear form on R($). This defines a continuous injection i : R($) → R$
of the space into its dual, and the completion of the image can be defined as the space of signed
currents C±(F), which can be thought as formal differences of positive currents. The cone of positive
currents C(F) is obtained by intersecting the countable number of half spaces i(·,α) > 0 for α ∈ π.
So it is a cone on an infinite dimensional polytope (dual to the convex hull of the α ∈ π with respect
to the intersection form) with a piecewize linear fractal-shaped boundary.

The modular group Mod±(F) = Out(π, δ) acts on $ and this provides a faithful linear represen-
tation into the orthogonal group O (C(π), i) of the intersection form (which is an indefinite analog
to the orthogonal group of Hilbert space). In fact, Ivanov’s theorem [Iva97] on the automorphism
group of the curve complex (which has been extended by Luo to the holed case [Luo00]), implies
that Out(π, δ) = O (C(π), i).
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Currents over the group. Recall from section 0 that when F has holes or boundary, that is
when H2(π;Z) = 0, the group π does not determine the homotopy type of its orbifold F, and there
is no way of telling which subset of π correspond to simple loops. In this paragraph we consider
a lattice Fuchsian orbifold F which is equivalent to a framed lattice (π, δ). In particular such a
pair defines an intersection pairing i : π × π → N, who’s isotropic elements correspond to simple
loops. Thus it is reasonable to hope for a definition of currents and the intersection form in terms
of (π, δ) only. We refer to [GlH90] for the definitions and properties of Gromov-hyperbolic spaces
and groups.

Since F has no boundary, any finite volume hyperbolic structure (thought as a discrete and
faithful representation π → G) provides a quasi-isometric embedding of π in H (by considering
the orbit of an arbitrary point), and therefore a homeomorphism between their Gromov boundaries
[π ' S1. So in the finite volume case, geodesic currents could be defined as positive Radon measures
on the space G([π) of unoriented pairs of distinct points in [π with the aforementioned topology.

Two equivalence relations on loops. Two conjugacy classes α, β in π are called trace equivalent
when the absolute value (or the square) of their trace functions are equal |tα(ρ)| = |tβ(ρ)| at every
representation ρ : π → PSL2(R). This implies that their geodesics have the same length for any
hyperbolic metric. Leininger showed the converse [Lei03, Theorem 3.2] when F is a closed surface,
so trace equivalence and hyperbolic length equivalence are the algebraic and geometric facets of
the same concept. Let us sketch his argument, anticipating the next section. It boils down to the
following facts : any point in Teichmüller space corresponds to a Fuchsian representation which lifts
to SL2(R), but those are dense in the real affine variety Hom(π, SL2(R)), whose complexification
Hom(π, SL2(C)) is an irreducible algebraic variety. Hence the equality of the the squared trace
functions (which are algebraic) on the component of the set of Fuchsian representations Hom(π,G)
corresponding to Teichml̈ler space, implies their equality on an open set of the whole complex
character variety, and thus everywhere including the non discrete real representations. In particular,
one can reformulate trace equivalence as the equality of the intersection functions i(α, ·) and i(β, ·)
when restricted to the image T(F) ⊂ C(F) of Teichmüller space in the space of currents.

Two loops α,β ∈ π are called simple intersection equivalent if they have the same intersection
number with any simple dual loop γ ∈ Σ ′. By continuity of the intersection form in the space of
currents and density of weighted simple loops in measured laminations, this is equivalent to asking
for the equality of i(α, ·) and i(β, ·) when restricted to ML. In his article, Leininger proves that
this topological notion has a geometrical counterpart: α and β have the same length for so called
branched flat metrics. Such a metric amounts to a quadratic differential, or a measured lamination,
so his assertion is not surprising in light of the previous comment.

Notice that Thurston’s sequential description of convergence to the boundary of Teichüller space
shows immediately that length equivalence implies simple intersection equivalence. The converse
is not true and Leininger constructs a counter-example. We shall see in the next section how to
understand the discrepancy between simple intersection and trace equivalence. This idea stemmed
during a collaborative work with Moira Chas as we found a systematic way to test simple intersection
and trace equivalence in the hole torus, which enabled us to compute plenty of counter-examples.
It relies on a striking analogy between a state-sum formula for the trace functions and Dylan
Thurston’s intersection formula with a simple loop. After the algebraic tools have been set up, we
shall be able to interpret simple intersection equivalence as a tropical limit for trace equivalence.
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2 Character variety and Goldman Poisson algebra of loops
The previous sections focused on hyperbolic structures over surface orbifolds and their moduli
spaces, which amount to Fuchsian representations of their fundamental group considered up to
conjugacy and their deformation spaces. The representation point of view is more supple for several
reasons : we can release the discreteness assumption, vary the Lie group PSL2 and extend the ring
of scalars to C. Before delving into the algebraic study of character varieties over the complex
numbers, let us review a couple of facts concerning the geometry of representations into PSL2(C).

Recall that the complex projective line CP1 (also called the Riemann sphere as it is conformally
diffeomorphic to S2), contains the real projective line RP1 as the set of fixed points under complex
conjugation (an equatorial circle of the Riemann sphere). The automorphism group PGL2(C) of the
complex projective line CP1, contains the stabilizer PGL2(R) of the real projective line RP1. The
subgroup PSL2(C) of index 2 in PGL2(C) consists of elements preserving the orientation of CP1.
It contains PSL2(R), also a subgroup of index 2 in PGL2(R), which preserves both the orientation
and the equator, and acts on the upper hemisphere. This upper sphere H yields a conformal model
for the hyperbolic plane : two points x and y in the hemisphere define a geodesic which intersects
the equator in two other points x ′ and y ′, and half the logarithm of the cross ratio [x,y;y ′, x ′]
defines PSL2(R)-homogeneous metric with constant negative curvature on H.

CHANTIER JUSQU’A LA FIN DE LA PAGE

Quasi-Fuchsian representations and Bers-uniformization A group π is Kleinian if it admits
a faithful and discrete representation ρπ → PSL( C) called a Kleinian representation. Those are
the orbifold fundamental groups of orientable and locally orientable 3-dimensional orbifolds which
admit a hyperbolic metric. We shall not go into the details, as they are similar to those expounded
in section 0 for 2-dimensional orbifolds, and we are interested in Fuchsian groups.

A representation ρ : π → PSL2(C) is Fuchsian if is conjugated to a Fuchsian representation in
PSL2(R), in other terms the action of π on CP1 through ρ preserves a circle Sρ. The quotient
CP1/ρ(π) by the image of a Fuchsian representation consists of two surface-orbifolds of negative
Euler characteristic endowed with conformal classes of hyperbolic riemannian metrics. The inver-
sion of CP1 in the circle Sρ descends to an isomorphism between the orbifold structures which is
anticonformal with respect to the underlying Riemann surfaces (smooth complex curves).

A representation ρ : π→ PSL2(C) is quasi-Fuchsian if it is faithful and discrete ρ(π) acts in CP1

preserving a Jordan curve.
Let QFF be the set of all quasi Fuchsian representations.
It may be non compact : denote h the number of ends. If the representation is not quasi

Fuchsian, then F is connected, otherwize it is a pair of isomorphic Riemann surfaces H/ρ(π).

Stratification and foliation Denote F(C) the space of Kleinian representations (it contains the
space F(R) of Fuchsian representations, whose orbits under conjugacy in SL2(C) consists of all
quasi-Fuchsian representations) topology of the quotient CP1/ρ(π) does not distinguish

The variety X(π) is partitioned and stratified into the subvarieties X(π, δ) consisting of represen-
tations (up to conjugation) which map the peripheral elements to parabolic matrices. Each X(π, δ)
being algebraically foliated by the subvarieties X(π, δ, T) of representations whose peripheral traces
are fixed by T , an family of h complex numbers indexed by δ.

To sum up this discussion, we may say that representations in PSL2(R) and PSL2(C)
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2.1 Representation spaces, connected components and coverings
When studying the algebraic geometry of character varieties, it is far more convenient to land
in the double cover SL2 of PSL2 and work over the complex numbers. But before defining and
studying SL2(C)-character varieties from an algebraic standpoint, we relate the topology of SL2
representation spaces to those of PSL2, over the real and complex numbers.

In this subsection, π is the fundamental group of a genus g > 2 closed orientable surface, and
T is a connected 3-dimensional Lie group. The goal is to describe the connected components of
Hom(π, T), how they lift and cover each other as the the group T varies under coverings, relying
mostly on [Gol81, Gol82]. Let us announce the general picture without further due, before specifying
it in each context of our interest.

General picture. Let S be a connected 3-dimensional Lie group which is simple (like PSL2(R)
or PSL2(C)), and U its universal cover. The simplicity assumption on S ensures it minimal with
respect to Lie group coverings. Consider an intermediate connected cover U → T → S, which
corresponds to a natural inclusion between fundamental groups π1(T) ⊂ π1(S). First recall that
the fundamental group of a connected Lie group identifies with a discrete subgroup of its universal
cover which is central (in particular it is abelian). It follows that more generally, the automorphism
group K ' π1(S)/π1(T) for a finite cover of connected Lie groups T → S also corresponds to the
kernel of a central extension K→ T → S.

We define the Euler class eu ∈ H2(π,π1(T)) by its evaluation on a representation ρ : π → T as
follows. Given any standard presentation of π as in 0, lift the images by ρ of the 2g generators in
T to the universal cover U : the product of their commutators in U projects to the identity in T ,
so it lies in the center π1(T) ⊂ U. It is well defined independently of the chosen presentation and
lifts and is called the Euler class of ρ denoted eu(ρ). It is invariant by T -conjugacy at the target.

The Euler class is a continuous function on Hom(π, T), hence locally constant, so it might be
useful to distinguish connected components. In fact, the level sets of eu : Hom(π, T) → π1(T) are
connected, so the values of the Euler class im(eu) ⊂ π1(T) parametrize the connected components of
Hom(π, T). This implies in particular that when U is a connected simply connected 3-dimensional
Lie group as above, the space Hom(π,U) is connected. Beware that eu : π0(Hom(π, T)) → π1(T)
may not be surjective, as we shall see in the examples. (In fact, when T is an algebraic group, the
space Hom(π, T) is an algebraic variety so it must have finitely many connected components, and
if in addition T has infinite fundamental group, then eu cannot be surjective.)

We now explain how to understand the Euler class as an obstruction to lifting representations,
which is the only one for surface fundamental groups. If a representation ρ : π → S lifts to T , its
Euler class eu(ρ) ∈ π1(S)must belong to the subgroup π1(T) ⊂ π1(S), in other terms be trivial in the
kernel K = π1(S)/π1(T) of the central extension K→ T → S. It turns out (by general arguments in
obstruction theory) that this is a sufficient condition to ensure a lift. So the connected components
of Hom(π,S) which lift to Hom(π, T) are parametrized by the intersection of im(eu) ⊂ π1(S) with
the subgroup π1(T) ⊂ π1(S). Moreover when ρ ∈ Hom(π,S) lifts to ρ ∈ Hom(π, T), we can multiply
the lift by a central representation π → K to obtain another one. Again, by obstruction theory,
the set of lifts is transitive (a torsor) under this multiplicative action of Hom(π,K) = H1(π;K).
More precisely, every connected component X of Hom(π,S) which lifts, is covered by a union of
components Y in Hom(π, T) and we have a Galois covering Y → X with group H1(π;K) ' K2g.

Of course this discussion holds without the simplicity assumption on S which makes it minimal
with respect to covering, and one may discuss lifts from T1 to T2 in the tower U→ T2 → T1 → S.
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Automorphisms of the complex projective line. In this paragraph S = PSL2(C), the auto-
morphism group of the complex projective line, also the orientation preserving isometry group for
3-dimensional hyperbolic geometry. The central extension Z/2→ SL2(C)→ PSL2(C) corresponds
to its universal covering. Indeed, SL2(C) retracts by deformation on its maximal compact subgroup
SU(2) which is homeomorphic to the 3-sphere and thus simply connected.

We deduce from the general that the representation variety Hom(π, SL2(C)) is connected. More-
over, there are two components in Hom(π, PSL2(C)) parametrized by the values of the Euler
class eu : Hom(π, PSL2(C)) → Z/2 which is onto. The projection map from Hom(π, SL2(Z)) to
Hom(π, PSL2(C)) defines a connected covering above the component having trivial Euler class,
whose Galois group H1(π,Z/2) acts as multiplication by central representations π→ {± id}.

A representation with non trivial Euler class must send the product of commutators for a
standard set of generators to − id, and this implies it cannot be reducible because ?. So the
connected component that does not lift only contains irreducible representations. This implies
that the conjugacy action by PSL2(C) has separated orbits (is properly discontinuous ?) and
the quotient is a smooth analytic variety. This is a noticeable fact, as it never happens for the
component with trivial Euler class (which contains the identity).

Automorphisms of the real projective line. In this paragraph S = PSL2(R), the auto-
morphism group of the real projective line, also the orientation preserving isometry group for 2-
dimensional hyperbolic geometry. Its double cover SL2(R) retracts by deformation on its maximal
compact subgroup SO(2) which is homeomorphic to the circle with fundamental group Z. Hence
π1(PSL2(R)) = Z also, and is the kernel of the central extension Z→ P̃SL2(R)→ PSL2(R).

The representation space Hom(π, P̃SL2(R)) is connected. It follows from works of Milnor and
Wood (see [Gol82]) that the image of the Euler class eu : Hom(π, PSL2(R)) → Z is equal to the
interval [χ,−χ], so Hom(π, PSL2(R)) has 1 + 2|χ| connected components. Only the trivial compo-
nent {eu = 0} lifts, and again the projection map Hom(π, P̃SL2(R)) → Hom(π, PSL2(R)) defines a
connected covering above it, with Galois group H1(π,Z) acting as multiplication by central repre-
sentations π → Z. Moreover, Goldman showed that a representation ρ : π → PSL2(R) is Fuchsian
(recall faithful and discrete) if and only if it has extremal Euler class eu(ρ) = ±χ. They form two
components distinguished by the orientation induced on the quotient spaces H/ρ(π). The action of
PSL2(R) by conjugation preserves each connected component, and is properly discontinuous over
the Fuchsian components which project modulo conjugacy on two copies of Teichmüller space.

Now let T = SL2(R) and consider the intermediate covering Z/2 → SL2(R) → PSL2(R). A
representation ρ : π→ PSL2(R) lifts that central extension when its Euler class is even, in particular
the Fuchsian representations can be lifted. Each component X2k ⊂ Hom(π, PSL2(R)) with even
Euler class 2k is the base of a Galois covering Y2k → X2k with group H1(π;Z/2) ' (Z/2)2g acting
as multiplication by central representations π → Z/2. There is however a difference between the
lifts of the Fuchsian components X±χ whose total spaces both have 22g components permuted by
the Galois action whereas the others have a connected lift Y2k, so in total there are 2.22g + 2g− 3
connected components in Hom(π, SL( R)).

More generally, denote Gn the unique n-fold connected covering of G1 = PSL2(R). When
m divides n the central extension Z/(n/m) → Gn → Gm yields a canonical inclusion π1(Gm) ⊂
π1(Gn). Now a component of Hom(π,Gm) lifts to Gn precisely when its Euler class, which we know
is zero modm, remains trivial mod n. Above each component which lifts, we have a Galois covering
map with group H1(π;Z/(n/m)), whose total space is a union of components in Hom(π,Gn).
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2.2 The character variety, its ring of functions and its topology
We shall use elementary concepts in complex algebraic geometry, always dealing with affine algebraic
varieties defined over Z. The study of such an affine variety is equivalent to that of its ring C[V]
of polynomial functions V → C, whose field of fraction C(V) correspond to the rational maps. We
also denote by C[E] the free polynomial (also called the symmetric) algebra over a set of variables
indexed by E (this does not enter in contradiction with the previous notation if we consider E as
the algebraic variety whose open subsets in the Zariski topology are the cofinite sets).

Let π be a finite type Fuchsian group. By section 0, it is the quotient of a free amalgam of
cyclic groups Z∗(2g+h) ∗Z/c1 ∗ · · · ∗Z/cs by a relation of the form

∏
[λj,µj] =

∏
δj

∏
τj, and every

torsion element can be conjugated in one of the Z/cj so that up to conjugacy π contains exactly s
distinct maximal torsion subgroups isomorphic to the Z/cj. From now on, G = SL2(C).

Algebro-geometric quotient. The set of representations Hom(π,G) is a finite dimensional al-
gebraic variety on which the group G acts by conjugation at the target, and the invariant functions
are precisely the polynomial expressions in the characters tγ : ρ 7→ tr(ρ(γ)) for γ ∈ π. Those trace
functions satisfy the following algebraic trace-relations which follow from those in π and SL2 and
properties of the trace.

The first pair of relations follows from invariance of the trace by conjugation and the fact that
in SL2 a matrix is conjugate to the transpose of its inverse. In particular tα only depends on α ∈ π.

∀α,β ∈ π : tαβα−1 = tβ & tα = tα−1 (conjugation & inverse)

A torsion element τj of order cj must be sent into a conjugate of the discrete subgroup Z/cj of
unitary matrices whose orders divide cj, so its trace must satisfy PTcj(tτj) = 2 where PTcj denotes
the Tchebychev polynomial such that 2 cos(cjθ) = PTcj(2 cos(θ)).

∀j ∈ {1, . . . , s} : t1 = 2 & PTcj(tτj) = 2 (unit & torsion)

Finally, for A,B ∈ SL2(C), multiply the Cayley-Hamilton relation B + B = tr(B) id by A and take
the trace to obtain the famous skein relation tr(AB) + tr(AB−1) = tr(A) tr(B).

∀α,β ∈ π : tαβ + tαβ−1 = tαtβ (skein)

It is a folklore result mainly due to Procesi [CP17], that every relation among the characters tα
can be deduced algebraically from those five. In other words, the ring C[Hom(π,G)]G of invariant
functions under conjugacy is the symmetric algebra (free polynomial algebra) over π modulo the
ideal generated by these trace relations. This corresponds to the ring of functions over its spectrum
Spec

(
C[Hom(π,G)]G

)
, also referred as the algebraic quotient Hom(π,G)//G; which is by definition

the affine algebraic variety with C[Hom(π,G)]G as ring of functions, and whose complex points are
the ring morphisms C[X(π)]→ C.

This algebraic quotient is called the character variety and is often denoted X(π), so the quotient
ring under consideration may consistently be written C[X(π)]. So for now we have the following
algebraic presentation (which actually holds for any finitely generated group π).

Theorem (Algebraic presentation). The algebra C[X(π)] is generated by the tα for α ∈ π with ideal
of relations generated by conjugation & inverse & unit & torsion & skein relations for all α,β ∈ π.
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Remark (PSL2(C)-characters.). One may similarly define the PSL2(C)-character variety of π
as an algebraic quotient of the representation space Hom(π, PSL2(C))//PSL2(C). The invariant
functions are polynomial expressions in the tαtβ for α,β ∈ π equal in homology mod2, among
which we have the squares of trace functions (but the trace functions are not well defined because of
the sign). The relations are more complicated, so the algebra of PSL2(C)-characters is not so easy
to handle and we prefer to work in SL2(C).

Recall that quasi-Fuchsian representations form a connected component in Hom(π, PSL2(C))
which lifts to Hom(π, SL2(C)), and quotienting by conjugacy (which only depends on the matrix up
to a sign) on finds that the geometric component of PSL2(C)-character variety lifts to X(π).

Notice that the polynomial trace-relations in the previous presentation are unitary with integral
coefficients, so X(π) is defined over Z and one may consider points over any ring, but the algebraic
geometry becomes much more intricate over non algebraically closed fields.

Remark (SL2(R)-characters). Defining the SL2(R)-character variety as an algebraic quotient re-
quires more care because R is not algebraically closed, and many pitfalls await the non specialists
in real algebraic geometry. Still, we know that any representation ρ : π→ SL2(C) on which all trace
functions take real values can be conjugated into a real form of SL2(C), that is SL2(R) or SU(2)
(and possibly even into R or S1).

Moreover, this should not prevent us from thinking about real representations, but simply to
prefer the geometric point of view when the algebraic one is less well suited. Recall for instance that
the Teichmüller space of a closed orientable surface identifies with a pair of connected components
in the space of PSL2(R)-representations considered up to conjugation, which can both be lifted in
22g ways to the conjugacy classes of SL2(R)-representations, and those lifts are Zariski-dense.

Components, stratification, foliation. When π has no torsion, the ring C[X(π)] is an integral
domain (see [PS19, Theorem 12]), so the character variety is irreducible (see also [RBKC96]), so its
complex points are connected. In general there are several irreducible components arising from the
factorisation of the Tchebychev polynomials PTcj appearing in the torsion relations. Indeed, the
trace of a torsion element τj with order cj must satisfy tτj = 2 cos(2πCj/cj) for some Cj ∈ Z/cj.
Accordingly, the ring C[X(π)] splits into a product of c1 . . . cs factors corresponding to the possible
values of the Cj; we index them by an element C in the product of cyclic groups with orders cj, that
is the torsion of the abelianization π/[π,π], also equal to TH1(π;Z) ' H1(π;Q/Z)). Each factor
C[X(π,C)] is an integral domain admitting the same algebraic presentation as C[X(π)] with the
additional relations tτj = 2 cos(2πCj/cj) (which may replace the PTcj(tτj) = 2): it corresponds to
the ring of functions over an irreducible component X(π,C) of the character variety, which is the
connected component over which tτj = 2 cos(2πCj/cj). They all have complex dimension 3|χ0|+2s.

The faithful representations are contained in the φ(c1) . . .φ(cs) components indexed by the
primitive elements C in the group TH1(π;Z) (invertibles of the ring). Every such component
contains a dense open subset of discrete and faithful representations QFC which is further parti-
tionned into b(2g+ h− 1)/2c open analytic subsets QFC(F) consisting of representations ρ such
that CP1/ρ(π) is homeomorphic to a double copy of F. When F has type (g,h, c), the set QFC(F)
contains in its boundary 2h analytic subspaces of lower dimensions each, defined by the simultaneous
vanishing of some peripheral traces. This defines a stratification for the space of all quasi-Fuchsian
representations (lifted to SL2(C)) which is compatible with the analytic foliation whose leaves are
the intersections of level hypersurfaces for the trace functions on peripheral components.
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Compactifications. The following discussion, which relies mostly on [Ota12, sections 2 and 3],
will apply to any finite dimensional affine alebraic variety with a fixed generating set for its algebra
of functions, but we shall deal with X(π) generated by the tα for α ∈ π.

It is a classical fact in algebraic geometry going back to Zariski [Zar44] that such an affine
variety with Zariski topology is compactified by the Riemann-Zariski space of Krull valuations for
its function field. Morgan-Shalen explained how to recover this compactification by considering
limits of valuative sequences whose elements ρn ∈ X are generic points with respect to the field Q
of definition, and which converge for the weak ∗ topology given by the evaluations tα(xn) ∈ CP1.

This Riemann-Zariski space is quite large, and one can define intermediary compactifications.
For instance sending a point ρ ∈ X to (log(|tα(ρ)| + 2))α∈π defines a map X → Rπ+ whose image
after projectivization X → P(Rπ+) has compact closure. Since this map may not be injective, this
does not always define a compactification of X. However one can remedy this discrepancy by first
considering the product with the natural injection into the one point compactification X→ X̂, and
then taking the closure of the image inside P(Rπ+)× X̂. This defines a compact space Xπ containing
a dense open set homeomorphic to X and Bπ(X) = Xπ\X. Using their valuative sequences, Morgan-
Shalen also recovered the points in the boundary Bπ(X(π)) of this new compactification in terms
of the larger Riemann-Zariski compactification by valuations. Yet the proposition is not as precise
as one could expect : they define a continuous surjection from a subset of of rank 1 valuations
centered at infinity onto Bπ(X).

Moreover, it turns out that if π has no torsion, then Bπ(X) coincides with Thurston’s space
of projective measured laminations. This can be shown without any valuative considerations
and follows from the definition of Bπ(X) and what we said in section 1. Indeed, the identity
tα = 2 cosh(lα(ρ)/2) shows that the length functions behave like the logarithms appearing in the
definition of Bπ(X). This might seem surprising as we also know that when π has no torsion torsion,
the real points coming from Hom(π, SL2(R)) of the SL2(C)-character variety also embedd by the
logarithm of trace functional into P(Rπ+), and that both components with extremal euler class are
simultaneously compactified by projective measured laminations. Moreover, Maxime Wolff showed
in his thesis [Wol07] that every other connected component with non extrmal euler class has a
boundary which strictly contains PML.

We shall provide later in this subsection yet another way if understanding the compactification
of the character variety by Bπ(X) ' PML in terms of valuations.
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2.3 Algebra of characters : simple presentation and linear basis
Untill now we have mostly considered the group π abstractly. Now we consider an oriented Fuchsian
obifold F (up to isotopy) with finite type (g,h, c) and fundamental group π (up to conjugacy).
Denote (π, δ) the corresponding framed lattice (up to conjugacy), presented as in section 0 for some
choice of λj,µj (unique up to the action of Mod(F) = Out(π, δ)). We now have an identification
between the (inverse pairs) of conjugacy classes in π and the (unoriented) h-loops in F. In this
subsection, we use this topological information (amounting to the intersection pairing i : π×π→ N)
to simplify the presentation of C[X(π)] and derive a linear basis depending on F.

Simple algebraic presentations. Recall that C[X(π)] has been presented as the symmetric
algebra C[π] over unoriented loops in F, modulo the ideal generated by the unit & torsion & skein
relations for α,β ∈ π. Note that it makes sense to index our variables tα by the set π of conjugacy
classes paired by inversion, while considering all skein relations induced by any choices of α and β
in the group π itself.

We may use the skein relation to show that C[X(π)] is generated by the tγ where γ ∈ Σ ranges
over all simple unoriented loops. Indeed, suppose the loop γ ∈ π is represented by an oriented i-loop
with a self intersection x ∈ F. Then basing the fundamental group at that point, the corresponding
element γ ∈ π1(F, x) splits as a product of two elements αβ, so the skein relation expresses tγ as
a linear combination of the traces of the three loops corresponding to α, β and αβ−1 each having
strictly less self-intersections than γ.

Corollary (Simpler presentation). The character algebra C[X(π)] is the quotient of the symmetric
algebra C[Σ] over the set of simple loops by the ideal generated by the unit & torsion & skein relations
where this time α and β only range among elements of π corresponding to simple loops in F.

This presentation is still quite cumbersome as the skein relations may involve pairs of simple
loops which intersect many times (and their product will decompose as a large combination of trace
functions), but of course there is a lot of redundancy. For simple loops α,β ∈ Σ denote α⊥0β when
i(α,β) = 0, α⊥1β when i(α,β) = 1, and α⊥2β when i(α,β) = 2 and their algebraic intersection
is zero (meaning that the two geometric intersection points have opposite signs). When either of
these occur, the loops are called incident and we denote α>β.

Corollary (Simplest presentation). The algebra C[X(π)] is the quotient of C[Σ] by the ideal gen-
erated by the unit & torsion & skein relations for all α,β ∈ π representing incident simple loops.

Proof sketch. This follows from Luo’s generalization [Luo98a, Luo00, section 3] of the continued
fraction expansions (the case of the torus) which we recall. For incident loops α>β, call ∂(α,β) the
collection of simple loops forming the boundary of a regular neighborhood of (a taut representative
for) α ∪ β. Those can be expressed as products of α and β or their inverses in the fundamental
group based at their intersection points.

Consider ξ−1 a maximal set of disjoint simple h-loops, and ξ0 the (finite) set of simple loops
which are incident to every one in ξ−1. Now for all n ∈ N, let ξn+1 be the set of simple loops
represented by γ ∈ π such that γ = αβ where either i(α,β) = 1 and {α,β,βα} ⊂ ξn or i(α,β) = 2
and {α,β,βα}∪∂(α,β) ⊂ ξn. Then Σ ⊂

⋃
n∈N ξn : so one can choose ξ0 as generators for C[X(π)]

and consider only the skein relations for α,β representing incident simple loops.

Remark. We have analogous simple presentations of C[X(π)] for any C ∈ TH1(π;Z), primitive or
not, by adding the C-torsion relations tr(tτj) = 2 cos(2πCj/cj).
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Linear basis of states. We now use our geometrical model to derive a linear basis for C[X(π)].
First recall the topological procedure employed as we reduced the number of intersection points

of an i-loop γ in order to derive our simpler presentation. This was an instance smoothing [Thu09]
an i-multiloop γ at the intersection point x which consists in modifying the multiloop γ in a small
neighborhood of x like in Figure 4 to produce either one of the two resolutions γ+ or γ−.

When the strands of the multiloop γ intersecting at x have been oriented, one may distinguish
the positive smoothing γ+ as the one respecting orientations. If like in the previous paragraph,
the point x is a self-intersection of a strand γi, which splits as the product αβ in π1(F, x), then
the positive smoothing γ+i = α ∪ β for any orientation has one more strand whereas the other
γ−i = αβ−1 has the same number as γ. Otherwize, the intersection point belongs to different
strands α,β, and then both resolutions γ± have one strand less than γ, as the intersecting strands
have been merged by considering the products αβ+1 and αβ−1 in the fundamental group π1(F, x).

Figure 2: Smoothing the intersection point of an i-multiloop : γ,γ+,γ−.

Now define for every h-multiloop γ with strands {γj}, and thus in particular for any state, the
element fγ =

∏
j(−tγj

) ∈ C[X(π)]. This quantity only depends on the homotopy class. It yields
f∅ = 1 for the empty state and fγ = −tγ for a single loop. Of course, everything we said concerning
the tγ for single loops γ ∈ π, namely the generation properties and relations they satisfy in the
algebra C[X(π)], remain valid for the fγ, except for the skein relation which now takes the following
neater form fαβ + fα∪β + fαβ−1 = 0 and this is the reason for introducing the sign which accounts
for the number of strands. Moreover, this enables to properly recast the skein relation for any
i-multiloop γ with smoothings γ+ and γ− at a self-intersection as in the following identity which
remains the same when the crossing arcs belong to the distinct strands:

fγ + fγ+ + fγ− = 0

Now representing γ ∈ π by an i-loop γ in F, a recursive application of the skein relation
fγ = −(fγ+ + fγ−) decomposes fγ into the sum of fϕ for ϕ belonging to a collection of 2si(γ)

one-submanifolds ϕ ∈ Φ(γ) ⊂ Φ depending on the isotopy representative. Each one-submanifold
is the disjoint union ϕ = ψ t θ of a state and a collection θ of trivial and torsion components.

fγ = (−1)si(γ)
∑

ϕ∈Φ(γ)

fϕ = (−1)si(γ)
∑

φ∈Φ(γ)

fθfψ

Thus C[X(π,C)] is linearly spanned by the tψ for ψ ranging over the set of all states.

Theorem (Linear basis). For every C ∈ TH1(π;Z), the family (tψ), where ψ ∈ Ψ ranges over the
set of states, forms a linear basis of C[X(π,C)].

Proof. The linearly independance is know when π is torsion free (see [PS00] or [CM12]). In general,
one can pass to a finite cover or mimic the ideas of the proof in [CM12].
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Remark (Not a monomial basis). Note that our linear basis is not stable by multiplication. In
particular it does not replace the simple algebraic presentations we gave : to recover the algebraic
structure one must add not only the unit & torsion relations but also the skein relations for α,β
ranging among all pairs simple loops.

Remark (Dependendence on the topological model). Recall from section 0 that π has a unique
topological model when H2(π) = Z or H2(π) = 0 and H1(π;Q) = Q, or equivalently from the point
of view of the model’s homeo-type, h = 0 or h = 1 and g = 0. In that case the linear basis is unique
up to the action of Mod(F) = Out(π, δ) where δ has cardinal h 6 1.

Otherwise, denoting 2−χ0 = 2g+h, we have b(2g+ h− 1)/2c linear bases at our disposal, and
it is compelling to study how they depend on the model, or whether one is better than the others. If
any, it seems like the model with g = 0 deserves special interest : there are less simple curves, less
relations in the simplest presentation (compare the one-holed torus and the three holed sphere) and
the modular group is a braid group. Since we are often interested by the study of an orbifold with
one hole, this method could be used to study its character variety in terms of the genus 0 one with
same fundamental group.

2.4 Compactifications of the character variety and intersecting loops
Support, extremal support and dual support. We still fix F a topological model for π and
C ∈ TH1(π;Z). In particular the states ψ inject naturally in the space of measured laminations
ML(F) and the trace functions of torsion elements are the real numbers tr fτj = −2 cos(2πCj/cj).

Definition 2.1 (Support of regular functions). Let f ∈ C[X(π,C)] be decomposed in the linear basis
of states as f =

∑
〈f | ψ〉 fψ. The support of f is the finite set of points in the space of measured

lamination defined by Ψ(f) = {ψ | 〈f | ψ〉 6= 0}.

Recall that ML ′ is BALBLABL the intersection form i : ML×ML ′ → R+

Definition 2.2 (Boundary, Extremal and dual Support). Let f ∈ C[X(π,C)]. The extremal points
of its support are the elements ψ0 ∈ Ψ(f), such that there exists λ ′ ∈ ML ′ satisfying the strict
inequality i(ψ0, λ ′) > i(ψ1, λ ′) for every other element ψ1 ∈ Ψ(f) in the support. The boundary
support is defined similarly but with a large inequality i(ψ0, λ ′) > (ψ1, λ ′). The dual support is
Ψ(f) ′ = {λ ∈ML ′ | max i(ψ, λ) 6 1}, here the maximum is taken over all ψ ∈ Ψ(f).

Question 3. By analogy, these correspond to the boundary and extremal points of the polytope
defined as the “convex hull” of Ψ(f), and to its dual polytope with respect to the intersection form.

Is there a convex structure or the space of measured laminations, which behaves well enough
with respect to the integral piecewize linear structure and the intersection form in order to turn the
previous remark in a rigorous statement ? The space of currents might be more appropriate.

Question 4. How to recognize the support, boundary and extremal support of trace functions coming
from loops (one strand), in other terms what is the image Ψ(π) ⊂ 2(Ψ) ? We may filter this image
according to the number of self intersection of the loops, or the cardinal of their supports.

Example : the free group on two generators
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Comparing length and simple intersection equivalence. Recall that two loops α,β are
length equivalent when they have the same length lm(α) = lm(β) for any marked hyperbolic
structure m on F, or equivalently when their trace functions are equal as elements in the ring
C[X(π)] of regular functions of the charater variety (by Zariski-density of F(F) in X(π)). They are
simple intersection equivalent when they have the same geometric intersection number with any
other dual loop or measured lamination γ ∈ML ′.

We now provide a unified description of trace equivalence and simple intersection equivalence
for homotopy classes of loops in the orbifold F. This will be algorithmic enable us to say precisely
when two loops are trace equivalent, when they are simple intersection equivalent. It will follow
in particular that if a loop is filling, then there are finitely many loops in its simple intersection
equivalence class. The idea is to combine relate the notion of extremal support with a formula for
intersecting taut i-multiloops with dual states, due to Dylan Thurston [Thu09].

Let γ be an i-multiloop and λ ∈ Ψ ′ a simple dual sate, considered simultaneously in F such
that their union is taut. Suppose that γ has an intersection point x, and denote γ+ and γ− the
two possible smoothings. Dylan’s smoothing lemma says that i(γ, λ) = max{i(γ+, λ), i(γ−, λ)}. He
then deduces an expression for the intersection pairing with γ defined on the set Ψ ′.

i(γ, ·) = max{i(ϕ, ·) | ϕ ∈ Φ(γ)}

Of course the trivial and torsion components in the one-manifolds ϕ ∈ Φ(γ) do not contribute
to the intersection, so one may restrict to the torsion free states

i(γ, ·) = max{i(ϕ, ·) | ϕ ∈ Φ(γ)} =
∨

ϕ∈Φ(γ)

∑
α∈ψ

i(α, ·)

His proof uses subtle geometrical and combinatorial methods.
In particular this implies that if one chooses a taut i-multiloop γ, then any complete resolution

φ ∈ Φ(γ) which is extremal with respect to the intersection form must belong to the support of fγ
(it cannot cancel with any other).

Proposition. Two loops α,β ∈ π are simple intersection equivalent is and only if they have the
same extremal support.

2.5 Compactification by simple valuations and Newton polytopes
Consider the space of valuations on C[(π)]

Those are precisely the functions v : C[X(Σ)] → {−∞} ∪ [0,+∞) which are null on C∗, take
finite values except for v(0) = −∞, and satisfy for all f,g the relations v(fg) = v(f) + v(g) and
v(f+g) 6 max(v(f), v(g)). We endow with the topology given by pointwize convergence, for which
the action of Aut(X(Σ)) is continuous.

Definition 2.3 (Simple valuations).

Remark (Not a monomial basis). Note that our linear basis is not stable by multiplication.

34



2.6 Goldman bracket and Poisson algebra of loops
In this subsection, F is a Fuchsian orbifold with fundamental group π, but we shall work with the
subset of real points of the SL2(C)-character variety coming from representations in SL2(R).

Goldman bracket for oriented loops We recall the Goldman Poisson-bracket on the symmetric
algebra Z[−→π ] over the base of oriented loops in F. By the Leibnitz rule, it is enough to define the Lie
bracket on the Z-module with basis −→π . Thus consider conjugacy classes α,β ∈ −→π represented by
two oriented loops in F, still denoted α and β, and such that α∪β : S1tS1 → Σ is a generic immersion
(no singular points, no tangencies and no triple intersections). So α and β meet transversely, at a
finite number of double points p ∈ α t β. At every such point, the ordered pair of tangent vectors
along α and β defines an orientation; which compared to that of the ambient surface yields a sign
ε(p;α,β). Moreover, denoting αp,βp the corresponding representants in Π(Σ,p), one may consider
the conjugacy class |αpβp| of their composition. Geometrically, this corresponds to the homotopy
class obtained by smoothing (resolving) the intersection while preserving orientations. Goldman
showed in [?, section 5] that for closed surfaces the following expression does not depend on the
chosen homotopy classes:

[α,β] =
∑
p∈αtβ

sign(p;α,β) · |αpβp|

and that it satisfies, once extended bilinearly to the Z-module over −→π , the alternate and Jacobi
identities; thus defining a Lie bracket. Chas and Gadgil generalized this in [CG16] to Fuchsian
orbifolds.

Unoriented loops. The inversion of elements in the group yields an involution ι : π→ π on the
set of conjugacy classes which extends to a linear involution on th symetric algebra Z[−→π ]. This turns
out to preserve the Goldman bracket so it is a Lie algebra automorphism, and its subalgebra of fixed
points thus inherits a Lie bracket. But this fixed algebra, linearly generated by the α+α−1, can be
identified with the symmetric alebra Z[π] over the set of unoriented loops. A simple computation
shows that the bracket

[α,β] =
∑
p∈αtβ

sign(p;α,β) · |αpβp|

Multiplicative structure and Poisson algebra The formal multiplication in Z[−→π ]

Symplectic

Proposition. There is a Lie algebra morphism from Z[−→π ]

Theorem (Chas Gadgil). Bracket determines intersection in an orbifold.

Final remark. As a side remark, let us briefly explain how Goldman discovered this Poisson
bracket. He was investigating the symplectic structure he defined in [Gol84] over the (smooth loci
of) character varieties for closed orientable surfaces with values in a complex or real Lie group G
satisfying very general conditions (it must preserve a non degenerate symmetric bilinear form on
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the Lie algebra, but concretely he works with classical linear algebraic reductive Lie groups and
their standar real embeddings in GLN(R)).

In short, his construction goes as follows. The cotangent space of Hom(π,G)/G at ρ can be
identified with the first cohomology group H1(π; gρ) with coefficients in the lie algebra g seen
as a π-module through ρ composed with the adjoint action of π ρ−→ G → Aut(g). Combining
the antisymetric cup-product on π with the symmetric bilinear AdG-invariant pairing on g, one
deduces a pairing H1(π; gρ) × H1(π; gρ) → H2(π; gρ), which composed with the Poincaré duality
lands in H0(π; gρ) = R. This pairing defines a smooth section of the second exterior power of the
cotangent bundle above the smooth points of the character variety. He proves (switching to de
Rham cohomology with local coefficients) that this smoothly varying non-degenerate antisymetric
pairing on the tangent space of the character variety, is indeed closed.

For the SL2(R)-character variety, that symplectic form coincides with the Weil-Petersen sym-
plectic form over the components which are lifts of Teichmüller space. This symplectic form induces
a Poisson bracket on the real subalgebra R[Hom(π, SL2(R)]SL2(R) of polynomial functions C[X(π)].
He defined the Poisson bracket on the algebra of loops Z[−→π ] so that the map α→ tα extends to an
epimorphism from the subalgebra of unoriented loops Z[π] onto the Poisson algebra of polynomial
functions over the SL2(R)-character variety.
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3 Skein algebra and quantization of the Golman algebra

3.1 Skein module of a 3-manifold and Kauffman bracket
A banded link in a compact orientable three manifold M is the embedding of a disjoint union of
n ∈ N bands S1× [−1, 1] intoM, considered up to isotopy (homotopy in the space of embeddings).
This is the same as a link with a trivialisation for the normal bundle of each component. Let
Λ = Z[A±1] denote the ring of Laurent polynomials in the free variable A. The skein module
ß(M) ofM is the free Λ-module generated by banded links modulo the local relations depicted in
figure REFIGURE.

FIGURE
The skein module of the three sphere is isomorphic to Λ, generated by the class of the empty set

[∅] (a union of zero bands). It is clear that P ∈ Λ 7→ P · [∅] ∈ß(S3) defines an injective morphism
and the Kauffman bracket provides the inverse. To construct a reciprocal, first represent a banded
link L in the sphere as a planar link diagram where the plane provides the so called blackboard
framing. By plane diagram we mean (as usual in knot theory [Kau01]) an i-loop whose intersections
come with a binary symbol encoding whether they correspond to over or under crossings in the
ambient space. Splicing its intersections all at once yields a state sum formula for its Kauffman
bracket 〈L〉 ∈ Λ (see [Kau87, Kau01]) and defines the reciprocal homomorphism ß(S3) → Λ. In
particular, the skein module of the sphere has a commutative algebra structure where multiplication
is obtained by taking the union of two banded links and smoothing intersections, the result being
independent on their relative positions.

Now if M is the thickened surface F×[−1, 1], its skein module is freely generated over Λ by
the set of all states: non-trivial simple multiloops of F along with the empty loop. Again, this is
shown by representing a band L as a diagram drawn on the surface and splicing all intersections
to obtain its Kauffman bracket 〈L〉 ∈ Z[Σ]; a common generalisation of the spherical case and the
partition function for generic loops in F. Following Kauffman, we denote 〈L | z〉 the coefficient of L
corresponding to the state z, that 〈L〉 =

∑
z 〈L | z〉 · z. An isotopy between banded links in M can

be realised on the associated i-loops in the surface as a composition of regular homotopy moves
(isotopy plus the local Reidemeister bigon move II and triangle move III) and an additional move
III’ which corresponds performing twice the monogon move I with opposite crossings. REFIGURE

FIGURE REGULARHOMOTOPY
Denote ß−1(M) the tensor product ß(M) ⊗Λ Z where the action of A on Z is by −1 multi-

plication; this corresponds to evaluating A at −1. As a Z-module, it is freely generated by the set
of states. But when A = −1, we have both A = A−1 so that the splicing of an intersection does
not depend on whether it is an over or under crossing, and invariance by the three Reidemeister
moves, so we can define a commutative multiplication on ß(M) by considering the union of two
planar diagrams followed by the splicing procedure. After what we have said in the first section
and a few graphical manipulations one eventually discovers that this algebra structure on ß−1(M)
is isomorphic to the skein algebra of characters Z[Σ]/IΣ (see CITE for a proof).

When M is the unit tangent bundle of a surface F, an element in the skein module ß(M) can
be represented as an i-multiloop in F whith the "blackboard" framing, and banded link isotopies in
M coincide with regular homotopies of i-multiloops on F. As before, ß(M) is the free module over
simple h-multiloops and the same procedure yields an algebra structure on ß1(M). However, the
invariance in the Reidemeister moves involves different signs which are relevant for the first move,
and this time the Kauffman bracket recovers the regular partition function. UNSURE
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3.2 Skein algebra and character variety for the unit tangent bundle
Character variety of the unit tangent bundle We can define

We have a natural epimorphism of fundamental groups −→π → π which yields a monomorphism
C[X(π)] → C[X(−→π )] into the subvariety coming from representations ρ : −→π → SL2(C) such that ρ
sends the fiber to id.

Remark. Isotopy classes and homotopy classes of knots in UF can be represented by immersed
loops in F up to the third Reidemeister move and regular homotopy respectively. Moreover, a knot
is the lift of a primitive geodesic for some riemannian metric on F if [NC01] and only if [MFS82]
its projection is taut. And by [HS94] the set of taut i-representatives of an h-loop are connected by
the third Reidemeister move.

3.3 Quantization and linking knots
JMARCHE derived skein module

Special case: a note on the quantum torus. We explain following [FG00] an easy way to
compute the Poisson Lie bracket of simple loops {tα | tβ} in the (non holed) torus by interpreting
its skein algebra as functions over the quantum torus. The algebra of functions over the classical
torus is isomorphic to the ring of bivariate Laurent polynomials C[l±1,m±1]. A deformation of the
multiplicative law yields an algebra over the ring ΛC = C[A±1] of complex Laurent polynomials
called the noncommutative torus, which contains the skein algebra of the torus. One may think
of the elements in this noncommutative algebra as functions over some space called the quantum
torus. All this discussion can be led over Z instead of C.

To be more precise, define the noncommutative torus as the Λ-algebra generated by two variables
m, l satisfying the relation lm = A2ml. As a Λ-module, it is freely generated by the ep,q =
A−hqlpmq, which verify the relations ep,qer,s = A

deh+r,q+s where d = ps− qr. Then it is shown
in [FG00, Theorem 4.3] that the map from the skein algebra ß−1[

2] of the torus to the quantum
torus sending the loop (p,q) to ep,q + e−h,−q defines an injective morphism of Λ algebras with
image the even subalgebra of the quantum torus. The proof relies on their product-to-sum formula
[FG00, Theorem 4.1] which in our notations states that the multiplication in the skein algebra of
the bands (p,q) and (r, s) with blackboard framing is equal to Ad(h+ r,q+ s)+A−d(p− r,q− s).

Knowing this one can compute, using Turaev’s quantization, the Poisson bracket between the
trace functions tp,q and tr,s of simple loops in the torus, by deriving at A = −1 the product-to-
sum formula: {tp,q | tr,s} = (−1)d−1d (th+r,q+s − tp−r,q−s). One may wish to deduce from this a
formula computing Poisson brackets in the holed torus... yet naïve approaches involving continued
fractions lead to computational challenges from which I have not managed to extract anything.
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4 Mixed volumes, intersecting loops and linking geodesics

4.1 Newton polytope of a trace function
Intersection form and duality in ML The pairing i(·, ·) together with the integral structure

dual lattice to

ML(F;Z) = {
1
2
ψ | ψ ∈ Ψ ′, and [ψ] = 0 ∈ H1(F,∂F;Z/2)}

with respect to the intersection form is the set of with half integral weights on the seprating
components. Recall that a simple loop is separating when it disconnects the surface, equivalently
when its homology class in H1(F;Z/2) is trivial.

The pairing i(·, ·) together with the piecewize linear structure provides a notion of duality for
poygons

Counting modular group orbits of loops via symplectic geometry In [Mir16], Mirzakhani
estimates the number of elements in the modular group orbit of an h-multiloop γ, as a bound on
their complexity tends to infinity. In particular she obtains, for every multiloop γ in a surface F
of type (g,n) endowed with a complete hyperbolic structure X ∈ Mg,n, the following asymptotic
formula:

lim
L→∞

#{α ∈ Mod ·γ | lX(α) 6 L0}

L6g−6+2n
0

=
nγm(X)

mg

in which nγ, m(X) and mg depend respectively only on the orbit of the homotopy class γ, the hy-
perbolic metric X, and the genus mg. More precisely, m(X) is the volume for the Thurston measure
in MLg,n of the set {λ ∈ML | i(X, λ) 6 1} and mg is the integral of the proper function m(X) over
moduli space Mg,n against the Weil-Peterson volume. She suggests a qualitative description of the
nγ in terms of volumes in moduli spaces, which remains a little mysterious and of no computational
use.

Counting loops via current analysis. Following her work, Rafi and Souto [RS17] generalized
this formula from the perspective of geodesic currents, providing an expression for the constants nγ
which puts them on a similar footing to them(X). If α is a filling current, denotem(α) = volTh{λ ∈
ML | i(α, λ) 6 1}. This is coherent with m(X) when the hyperbolic metric X is interpreted as the
Liouville current on the space of geodesic. Then for any two filling currents α and γ:

lim
L→∞

#{ϕ ∈ Map(S) | i(α,ϕ(γ)) 6 L0}

L6g−6+2n
0

=
m(α)m(γ)

mg
.

In particular if γ is a filling loop, they show that nγ = m(γ). This is another key point for deriving
a combinatorial expression of nγ in terms of the states of γ.

Remark. Note that Mirzakhni’s result holds for any loop as she counts elements in an orbit instead
of mapping classes. However, as long as cardinals of stabilizers are dealt with carefully, one may
perform topological recursion until all the loops left are filling, and the problem of counting orbits
boils down to that of counting mapping classes.
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A combinatorial computation of them(γ). In this paragraph we explain how one can compute
the constantsm(γ) from the states of a filling loop γ in F. It is a simple application Dylan Thurston’s
intersection formula to Rafi-Souto’s result, using the expression of Thurston’s symplectic pairing in
Hatcher’s standard train track charts for ML.

By Dylan’s formula ??, the borelian {λ ∈ML | i(γ, λ) 6 1} is the intersection over the collection
of states ζ ∈ σγ of the Bζ = {λ ∈ML | i(ζ, λ) 6 1}. Now fix a Fenchel-Nielsen decomposition {sj} of
the surface (defined in A.1), and consider the associated cellulation of ML provided by the standard
train tracks (see [PH92, Chapter 2] or [Hat88, figure 7]: there are four possible combinatorics by
pants, and two for each cuff (depending on the inequalities satisfied by the weights). Those make up
a finite number of charts Tt, disjoint up to a negligible set, each one being defined by a finite number
of inequalities in RN where N = 6g− 6+ 2h is the total number of edges of a standard train track.
The Fenchel-Nielsen coordinates are given by the weights over the edges of the train track, that
is the intersection numbers lj and twisting numbers θj with the loops in the pants decomposition.
The convex sets Bζ ∩ Tt are defined by the triangular inequalities defining Cτ and a finite number
of inequations on the coordinates ls The symplectic pairing in each chart is given by

∑
dlj ∧ dθj

where the l’s are the intersection numbers with the loops defining the pants decomposition, and
the θ’s are the twisting numbers appearing in the annuli inserted between two pants. We are thus
looking for the standard euclidean volume in RN of the intersection over s’s and union over t’s of
the Ts ∩ Tt; for a computer, this is a an easy chore.

If γ is not filling, one can make the same computation by considering a smaller subsurface F ′

filled by γ. HOW and WHY ?

4.2 Intersection numbers and mixed volumes in ML

4.3 Linking numbers and Poisson bracket
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A Modular structures and Teichmüller tower

A.1 Modular structures
Luo observes that in a hyperbolic surface F, the set Σ ′ of its essential simple loops as well as the set
F of its Fenchel-Nielsen decompositions bear modular structures; that is a (PSL2(Z),QP1)-structure
in the sense of Thurston [Thu97] with the additional compacity assumption that the automorphism
group of the structure acts with finite orbits. Although to my knowledge he has not used them as
such, they provide a better intuition for the relations between simple loops, and rely on ubiquitous
principles which are the object of this section.

A Fenchel-Nielsen system, also called pants (or three holed sphere) decomposition, of Fg,n,
consists of a simple multiloop with 3g − 3 + n components. An Euler characteristic count shows
indeed that the complement is a disjoint union of pants. The level l of a surface is the number of
loops in any of its pants decompositions. At level 0 we have the sphere with three holes, at level 1
the sphere with four holes and the once holed torus, and at level 2 the sphere with five holes and
the twice holed torus. Note that two essential level 1 subsurfaces of F which intersect in a level 0
subsurface have union a level 2 subsurface.

Level one surfaces. We explain first the modular structure on simple loops in the holed torus
F1,1. The fundamental group Γ is the free group F2 over two generators α,β. Essential simple loops
Σ ′ are in bijective correspondence with QP1. They correspond to the integral points in the space
of measured laminations with no boundary parallel components, which corresponds to the positive
cone over RP1, or if you prefer the quotient of the plane R2 = H1(F1,1;R) by the symmetry with
respect to the origin.

Since two simple loops corresponding to different slopes p/q and r/s in QP1 intersect ps − qr
times, an essential simple multiloop contains at most one slope p/q with non zero multiplicity
mp/q. Denoting s = mp/q(p,q) ∈ Z2 such a multiloop, its intersection with another one s ′ is
|det(s, s ′)|. Let C be a conjugacy class in Γ , represented by an i-loop c, which we may choose to be
taut. Each one of its 2si(c) states defines (by forgetting unessential components) a unique vector
z = mp/qp/q ∈ Z2, so the set of essential states σ ′v is just encoded by a finite set of integral points
in the cone R2/± 1. Dylan’s formula thus provides a neat expression for the intersection function
with c over Σ: i(c, s) = max{|det(z, s)| | z ∈ σ ′c}.

Note that if two simple loops α and β intersect once, which we denote α⊥1β, then the two
resolutions of the intersection correspond to their products αβ and βα in the fundamental group
based at that point. The graph whose vertices consists of essential simple loops p/q ∈ QP1 and
whose edges are given by the relation ⊥1, is the one skeleton of the Farey complex pictured below.
Every pair of once intersecting essential simple loops α⊥1β gives rise to a positively oriented triangle
(α,β,αβ) and conversely. It also gives rise to a negatively oriented triangle (α,β,βα) adjacent to
the previous one along the edge (α,β): together they form a quadrilateral. The triangles make up
a homogeneous set under the action of the modular group PSL2(Z) by Möbius transformations.
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Figure 3: The Farey complex as a tiling of the hyperbolic plane.

The approximation of a rational number p/q by the partial series of its continued fraction
expansion:

1
0

,
0
1

,
p1

q1
, . . . ,

pn

qn
=
p

q

decomposes any element of Γ representing the simple loop p/q ∈ QP1 as a non trivial product of
two elements in Γ representing pn−1

qn−1
and pn−2

qn−2
which intersect once. This implies that any simple

loop can be written as a product of loops α = α1 . . .αn such that every initial segment α1 . . .αj
is a simple loop intersecting the simple loop αj once. Thus the ideal IΣ is generated by the ??
relation and the skein relations for pairs of elements in Γ corresponding to simple loops intersecting
at most once. A more general phenomenon was mentioned in section 2.2, we shall come back to it
in a moment.

In the four holed sphere F0,4, two distinct simple loops α and β always intersect twice with
opposite signs. This is denoted α⊥2β. The hyperelliptic involution quotients F0,4 to F1,1 (after
erasing conical singular points), and establishes a bijective correspondence between essential simple
loops (a simple loop in an orbifold cannot loop around a singularity). Moreover this correspondance
sends ⊥2 to ⊥1, so the preceding modular structure over the space of essential simple loops applies
in the exact same way provided one multiplies all intersection numbers by two.

Modular structure on simple loops. We have seen that the set of essential simple loops on
level 1 surfaces carry modular structures, and so does the level 0 surface (although it is empty, we
shall comment on this just in a moment). Following Luo [?, section 3], each level 1 subsurface F ′

defines a charts for the modular structure on Σ ′(F) by considering the restriction of Σ ′(F) to the
set of loops contained in F ′. Since every simple loop is contained as an essential loop in level 1
subsurface, the union of all charts covers Σ ′. Moreover, the automorphism group of the modular
structure is [?] the orientation preserving modular group of the surface, and it acts with two orbits
on Σ ′ so the structure is compact. There is a somewhat uneasy feeling about the transition maps:
since any two charts intersecting in at least two elements are equal, there is nothing to check. To
observe non-trivial overlappings, one has to consider level 2 sub-surfaces, and that is where all the
richness of the modular structure on the set of simple loops appears.
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Modular structure on Fenchel-Nielsen systems. Hatcher and Thurston showed in [HT80]
(see [Luo98a, Lemma 5.2]) that any two pants decompositions are related by a finite number of
simple moves which we define now. Denote α>α ′ when either α⊥1α

′ or α⊥2α
′. A simple move

consists in replacing a component αj of a pants decomposition α with another simple loop α ′j such
that α ′j>αj (of course α ′j must not intersect any of the other αk to maintain a pants decomposition).
Now following [Luo98b, appendix B], we define a charts F(F) around α ∈ F as follows. Fix a
component αj and denote F ′ the only level 1 subsurface containing αj and disjoint from the others;
consider the set Uj(α) = {α ′ | ∀k , α ′k = αk,α ′j>αj}, map F(F) to F(F ′). Then the natural map
α ′ ∈ Uj(α) 7→ α ′j ∈ F(F ′) is a chart to QP1. Clearly, the charts satisfy the covering property, and
again two charts intersect in at most one element trivially. Hatcher and Thurston’s lemma, says
that given two pants decompositions, there is a sequence of overlapping charts going from one to
the another. This SHOULD? imply that that the full automorphism group of the structure is the
oriented modular group and thus by the classification of surfaces that the structure is compact.

Generalized continued fraction approximation. The continued fraction expansion for simple
loops in the holed torus may be generalized to a surface Fg,n of general type. The relations ⊥1,
⊥2, and their union > as well as the notions of (oriented) triangles and quadrilaterals for simple
loops readily extend to the space Σg,n of simple loops in F. If α>β, denote ∂(α,β) the set of
boundary components of a tubular neighborhood for α ∪ β. It has one either one or four elements
according to whether α⊥1β or α⊥2β. Given a subset G0 ⊂ Σ ′, we may construct a sequence
Gn+1 = Gn ∪ {γ | γ = αβ where α,β,βα ∈ Gn, ∂(α,β) ⊂ Gn}, and define their union G∞. Then
say that G0 generates Σ ′ if G∞ = Σ ′. In terms of the modular structure, the sequence is obtained
by completing triangles and quadrilaterals.

Luo showed [Luo10, Proposition 1] (see also [?, Lemma 3.2]) that if we define G0(γ) for a simple
multiloop γ as the set of simple loops γ ′ such that γ ′>γi or γ ′∩γi = ∅ for every component γi; then
G0(γ) generates Σ ′. In particular, any function f defined on Σ whose value on αβ is determined by
those on α, β, βα and the elements of ∂(α ∪ β) is uniquely determined by its restriction to G0(γ).

Remark (approximation of measured laminations). We may also generalize continued fraction ap-
proximation of measured laminations by their integral points, from the classical case of the (holed)
torus to the general type surface. Since Dehn twists generalize naturally the two dimensional
transvections (parabolic Möbius transformations), the analog for quadratic surds (periodic contin-
ued fractions by Lagrange), correspond to the stable and unstable foliations of a pseudo-Anosov
diffeomorphisms.

A.2 Luo-Grothendieck’s reconstruction principle
In his Esquisse d’un programme [SL97], Grothendieck suggests a reconstruction principle for the
geometry of the Teichmüller spaces Tg,n from that of the first two levels; the level being given by
the dimension 3g − 3 + n, which corresponds to the number of interior loops in a pants decom-
position of the underlying topological surface. In level 0 we have the sphere with three holes, in
level 1 the sphere with four holes and the once holed torus, and in level 2 the sphere with five holes
and the twice holed torus. Mirzakhani’s topolgical recursion formula can be thought as a quanti-
tative reconstruction principle for the volumes of strata in moduli spaces induced by Weil-Petersen
symplectic structures.

Luo proved such reconstruction principles for hyperbolic length functions in [Luo98a] as well
as for measured laminations in [Luo10], which we now explain since it will be essential to our
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discussion. A function f : Σ → R is called geometric if it is the geometric intersection with an
extended measured lamination: its leaves may have ends in the boundary of the surface. Call the
restriction of f to an essential subsurface, its restriction to all simple loops which can be homotoped
inside it (including its boundary components). Using Hatcher and Thurston’s theorem saying that
two pants-decompositions of a surface are related by a finite number of special moves, Luo reduces
the geometric property to subsurfaces of level at most 2, and then proves the reconstruction principle
for those to obtain the following.

Theorem (Luo, [Luo10]). A function is geometric if and only if its restriction to (the simple loops
contained in) any essential subsurface of level one is geometric.

He then provides necessary and sufficient conditions on a function defined on the simple loops
in a level one subsurface to be geometric. We denote δ the boundary component of a level one
surface, and δi its components for F0,4.

Theorem (Luo, [Luo10]). A function f : Σ(F1,1) → R is geometric if and only if for all positive
triangles (α1,α2,α3) and all quadrilaterals, say made up of the previous one and the negatively
oriented triangle (α1,α2,α ′3), we have:

f(α1) + f(α2) + f(α3) = max{2f(αi), f(δ)}
f(α3) + f(α

′
3) = max{2f(α1), 2f(α2), f(δ)}

A function f : Σ(F0,4)→ R is geometric if and only if for all positive triangles (α1,α2,α3) such
that (αj, δs, δr) bounds a holed torus and, and for all quadrilaterals (α1,α ′3,α2,α3):

f(α1) + f(α2) + f(α3) = max
16i63
16p64

{2f(αi), 2f(δp), f(δ), f(αj) + f(δr) + f(δs)}

f(α3) + f(α
′
3) = max

16i62
16p64

{2f(αi), 2f(δp), f(δ), f(αj) + f(δr) + f(δs)}

Moreover in both cases, the corresponding extended measured lamination is integral if further-
more f(δ) ∈ 2Z.
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Classical invariants for tropical geometric valuations Consider a measured lamination λ
which is a weighted union of simple loops λ1 ∪ . . . λr whose components are weighted by real
coefficients. The associated geometric tropical valuation vλ has rank one and rational rank equal
to the dimension of the Q vector space spanned by the weights. This is bounded by r.

Proposition A.1 (monomial geometric tropical valuations). For a real weighted multiloop λ as
above, the valuation vλ is monomial with transcendance degree 3g− 3− ratank(vλ).

In particular, the vλ are Abyhankar

Geometric valuations of higher rank There are other ways to construct valuations from
simple multiloops. Those generalize the previous case in that their rank r can take any value up
to 3g − 3 + n. Consider a multiloop λ which has been decomposed as a union λ1 ∪ · · · ∪ λr over
an ordered set of r non trivial simple multiloops. Equivalently, the components of λ (distinct non-
trivial homotopy classes in Σ) have been partitioned into r non-empty sets, and those parts have
been given an order. Such an element can be denoted (λ1, . . . , λr). Then minus the intersection
numbers with the λi sends any monomial of the skein algebra into a subgroup of Rr endowed
with the lexicographic order. The proof of the following proposition follows the same lines as the
rank-one case.

Tangent space at a valuation. Fix v a valuation on K(X). We wish to define a tangent space
to the space of valuations at that point. If v is a divisoral valuation with center W (in particular it
has rank one) it is natural to expect that the tangent space at v is the set of valuations v ′ whose
center is in the exceptional divisor W̃ of the blowup of X at W. Algebraically, this implies that
v′ ⊂W=v.

See appendix B of Favre Jonsson for tangent space of divisoral valuations.

Poisson structure on the space of valuations
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B Idées
Kauffman décomposition des courants sur PML Si on parvient a mettre tructure convexe
sur Teichmüller plus PML dans courrants géodésiques, alors en s’inspirant du théorème de Choquet,
on aimerait désintégrer la mesure (courrant) associée à une métrique comm combinaison linéaire
convexe des points extrêmaux c’est à dire certainement de PML. Cela donnerait une formule du
genre

i(ρ, ·) =
∫
PML

i(λ, ·)× i(ρ, λ)d volTh(λ)

La preuve pourrait passer le théorème de Bowen Margulis ou des choses analogues à ce qui est
fait en termes de convergence des mesures dans Rafi-Souto.

On pourrait peut être même montrer (mais alors ce serait en soi un fait remarquable) que si
l’on prend une suite de courbes fermées aléatoires parmis toutes les courbes de longueur N, alors
leur Kauffman-décomposition dans le module de skein converge (au sens de courants géodésiques)
vers la métrique. Pour cela la preuve s’appuyerait sur "la courbe alétoire de Thurston" présentée
par Bonahon [Bon88]. On peut également au lieu de prendre des courbes aléatoires, moyenner
sur toutes les courbes de longeur N; la preuve passerait alors plutôt par un argument style Bowen
Margulis.

A quoi ça sert ? C’est vrai qu’on a déjà le pendant algébrique de cette formule et il est bien
meilleur: si l’on connait la longueur, c’est à dire la trace, pour ρ de 2m − 1 courbes simples (de
Horowitz) alors la longueur de toute courbe (même pas simple) s’exprime comme l’évaluation en ρ
de son polynôme de Fricke relatif à ces 2n − 1 courbes.

L’avantage de la précédente formule, réside surtout dans le fait de faire correspondre (grâce à
la structure convexe) les points de vus courants et skein. En effet on peut la penser comme un
analogue de "la fonction de partition" d’une courbe: on décompose un courant géodésique comme
barycentre de multicourbes simples.

Série L d’une valuation Formule de McShane.

Isotopy and regular homotopy loop invariants. We define the state sum of an i-multiloop
and show it is a regular homotopy invariant. This notion will make it easy to deduce the promised
linear basis, and will be of crucial importance as we revisit compactifications in the sequel.

Recall the topological procedure employed as we reduced the number of intersection points of
a loop γ in order to derive our simpler presentation: this was an instance of splicing [Kau01] also
called smoothing [Thu09] an i-multiloop γ at the intersection point x. This consists in modifying
the multiloop γ in a sufficiently small neighborhood of the intersection point as in Figure 4 to
produce either one of the two resolutions γ+ or γ−. In general, the crossing may involve one or two
strands of the multiloop, and in both cases the total number of strands may stay the same, or else
respectively increase or decrease by one.

Figure 4: Smoothing an intersection point : γ,γ+,γ−. A state of an i-multiloop in CP1 \ {0, 1,∞}.
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The simultanenous choice of a smoothing for each self intersection of γ yields a one-dimensional
submanifold ϕ ∈ Φ, which is the disjoint union ψ t φ of a state ψ ∈ Ψ, and trivial or torsion
components φ. The collection (multiset) of those 2si(γ) submanifolds is denoted Φ(γ). Note that
si(γ) and even moreso Φ(γ), highly depend on the isotopy class of γ, not just on its homotopy
class.

Now let us define a weaker invariant Ψ(γ) of the i-multiloop belonging to the free Z-module
over the base of states Ψ. For this, in every submanifold ϕ = ψ tφ in the collection Φ(γ), replace
φ by (−2)k where k counts the number of (trivial) components, and sum the terms (−2)kψ in this
modified collection to get an element Ψ(γ) ∈

⊕
Ψ Zψ. We call this the state sum of γ as we recognize

an expression reminiscent of the state sum formula for the Kauffman bracket [Kau87, Kau01].

Proposition (Regular homotopy invariant). The state sum Ψ(γ) ∈
⊕

Zψ is invariant under
regular homotopy, that is under homotopy in the space of smoothly differentiable immersions.

Proof. Note that unlike general states, a state without trivial components has a unique simple
representative up to isotopy. We must check that such an expression is locally invariant under the
second and third Reidemeiseter moves. This follows from an easy graphical computation using the
skein relation to resolve the two or three intersection points before and after the local move.

Remark. Since by [HS94] the set of taut i-representatives of an h-loop are connected by the third
Reidemeister move, this expression can actually be canonically defined for an h-multiloop.

This whole discussion about isotopy and regular homotopy invariants will serve later on, as we
consider the character variety of the unit tangent bundle UF to the orbifold. Indeed, isotopy classes
and homotopy classes of knots in UF can be represented by immersed loops in F up to the third
Reidemeister move and regular homotopy respectively. Moreover, a knot is the lift of a primitive
geodesic for some riemannian metric on F if [NC01] and only if [MFS82] its projection is taut.

Question 5. How to recognize the state sums of i-loops (one strand) ? And how about taut i-loops,
in other terms what is the image Ψ(π) ⊂

⊕
Zψ ?

Define the skein module Sk(F) as the quotient of the free module over the set of all i-multiloops
up to regular homotopy, by ε = −2∅ and all relations of the form γ + γ+ + γ− = 0 obtained by
smoothing an intersection point of an i-multiloop. The state sum decomposes any element of the
skein module as linear combination of states, in other words

⊕
Zψ generates Sk(F) as a module.

Proposition (Skein algebra). The union of i-multiloops, extended by bilinearity, defines on the
skein module Sk(F) the structure of a commutative algebra, whose unit is the empty multiloop.

Proof. Note that the union of i-multiloops is well defined up to regular homotopy, denote it α∪β.
In particular, if ϕ = ψ t φ and γ are in Sk(F) then γ ∪ ϕ = γ ∪ ψ ∪ φ independently of the
position for trivial loops. To ensure the well definition of the product, we must check that for all
α,β ∈ Sk(F) such that decomposes as a sum β = β++β− we have α∪β equals α∪β++α∪β− in
the module. In other words all identities obtained by forcing the equalities given by the product rule
are already contained in those we have quotiented by to define the skein module, so the underlying
module to the skein algebra is not smaller (not a non trivial quotient) of the skein module.

In particular this shows Ψ(Ψ(α)∪Ψ(β)) = Ψ(Ψ(α)∪Ψ(β)) so that one can move by isotopy
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