Survival Guide to First Order Logic (FOL)

Tristan Stérin Christopher-Lloyd Simon

July 2020

Contents

2.2 Evaluating terms|
2.3 Evaluating formulae: defining truthf. o000
2.4 Summary: notation for truthl o o oL
2.5 Equivalence between models|. 0oL

[B_Proofs

4 Soundness, completeness and compactness of FOL|

5 Computability]

P.1 Algorithms|
5.2 Non-computable functions| oo

6 Expressivity of FOL|

17 Godel incompleteness theorems|

18 Going further|

10
11
12
13
14

15

16
16
17

17

17

17

Foreword

First Order Logic (FOL) is one way to think about mathematical thinking: it is a formal approach
to the concepts of truth and deduction. FOL gives a model of what mathematicians are doing
when they are doing mathematics. The main strength of this perspective, with Godel’s theorems
as pinacle, is that, by allowing to reason about reasoning, it identifies essential limitations of
the deductive method — as modelled by FOL. Quite surprisingly, these limitations appear already
when considering mathematical objects “as natural” as the natural numbers with addition and
multiplication: (N, +, x). However, the devil is in the details and, in the case of FOL it is very
easy to get lost in these details. Hence, the goal of this document is to present FOL halfway
between being completely formal and having an informal discussion with the hope that the reader
will find some sort of conceptual clarity in this presentation. We believe that making parallels
with Computability Theory is very fruitful when considering FOL hence this document develops
and exploits the computational approach without restrain. All along the document, we will be
explicit each time we make an Assumption at the meta level (i.e. the level from which we write
not the level of what we are writing about), which gives a good indication of what is assumed
when practicing FOL. We follow roughly the same presentation as in [I] which is an excellent, very
accessible, and very technically precise presentation of FOL that can be freely downloaded onlineﬂ

Finally, it is important to note that, although having been historically dominantﬂ FOL is
far from being the only way to think about mathematical thinking, a lot of other logics exist:
intuitionistic logic, second order logic, higher order logics, modal logics, temporal logics, geometric
logics et caetera. Hence, there is nothing universal in FOL: all what we are going to say is valid if
you decide to accept the meta-level assumptions and logical axiomsEI of FOL.

Thttps://minerva.geneseo.edu/a-friendly-introduction-to-mathematical-logic/
?https://philosophy.stackexchange.com/questions/2617/how-did-first-order-logic-come-to-be-the-dominant-formal-logic
3For instance, a logical axiom of FOL is that "P or not P" always hold for any statement P (excluded middle).

That axiom is not accepted by intuitionistic logicians, see https://en.wikipedia.org/wiki/Intuitionistic_logic.

https://minerva.geneseo.edu/a-friendly-introduction-to-mathematical-logic/
https://philosophy.stackexchange.com/questions/2617/how-did-first-order-logic-come-to-be-the-dominant-formal-logic
https://en.wikipedia.org/wiki/Intuitionistic_logic

1 Syntax

Assumption 1. We have a naive concept of collection of objects (also called class). We also have a
concept of equality between collections: two collections are equal iff they contain the same elements.

1.1 Language

In this section we talk only about syntax: there is no meaning associated to the strings of symbols
that we define, we only say what are valid strings of symbols (in practice, trees of symbols) in
First Order Logic (FOL). For instance, when we talk about "function symbols" we assume nothing
about the concept of function, that is just the name of a class of symbols (which will be justified
later when we talk about semantic).

Definition 2 (Language). A language L is given by the following symbols, each coming with a
notion of arity, which for now is just a non-negative integer :

1. A collection of constant symbols, with arity 0
2. A collection of function symbols with their arity
3. A collection of relation symbols with their arity

4. The equality relation symbol denoted = with arity 2

Important. All along this document we will try not to use logical symbols (such as =) at the
meta-level. For instance we will use := instead of = when we want to define or state that two
objects are the same at the meta-level (the level from which we write, not the level “inside” a given
FOL language). We will also use plain english sentences such as “this equals that”.

Example 3. For instance, the language of arithmetic is Ly := (0,5, +2, x2, <?) where 0 is a con-
stant symbol, S, +, z are function symbols and < a relation symbol. Arities are given in exponents.

Remark 4. As functions are a special kind of relations, one could expose the whole theory with
only relation symbols. However, the exposition is clearer when having function symbols so we keep
them. Point 4 of Definition [2]is forcing all languages to have the equality symbol. At the moment
it is not justified since this symbol "means" nothing, but it will become crucial when talking about
semantic because we are studying First Order Logic With Equality. Equality is a difficult conceptﬂ
Finally, we assume nothing about the cardinality of the different collections that are involved in
the definition of a language, in particular, they do not have to be finite.

1.2 Terms

Assumption 5. We have access to a countably infinite collection of variable symbols V := {z,v, ...},
calld variables for short.

Given a language L, we now construct syntactic terms, which are formal trees (again representing
nothing but themselves yet). Each node is labeled by a symbol whose arity is equal to the number
of edges descending from the node.

4see https://math.stackexchange.com/questions/363168/first-order-logic-without-equality and http://
rgl-teaching.mpi-inf.mpg.de/autrea-ss10/script/lecturel?.pdf

https://math.stackexchange.com/questions/363168/first-order-logic-without-equality
http://rg1-teaching.mpi-inf.mpg.de/autrea-ss10/script/lecture17.pdf
http://rg1-teaching.mpi-inf.mpg.de/autrea-ss10/script/lecture17.pdf

/N
/\

S 0
S

0

Figure 1: Example of a term in Ly := (0, 5%, +2, x2, <2) (Definition @

Definition 6 (Term). Given a language £, a L-term is a finite tree where:
e Leaves are either constant symbols or variables symbols (Assumption
e Internal nodes are function symbols. Their arity gives the branching factor

The definition is recursive: children of internal nodes are either internal nodes or leafs. We write
Tr the collection of all L-terms.

Example 7. Figure [1| depicts a term in the language of arithmetic Ly := (0,5, +2, x2, <2).
That term is of complexity 4. Although terms are intrinsically trees, they can be represented with
traditional infir notation, in the case of Figure (y x $50) + S0. Or in prefix notation (never
ambiguous): + X y S50 50. Again, all of this is purely syntactic, so for instance the term + 0 S0
is different from + S0 0.

Remark 8. Terms represent the mathematical (formal) objects that one can conceive in a given

language.

1.3 Formulae

Once we have mathematical objects, we can start talking about them: we can construct statements,
called formulae. Note once again, that we do not yet give a meaning to formulae: they are only
syntactic trees.

Definition 9 (Formula). Given a language £, a L-formula is a finite tree where:

e Leaves are relations of terms, i.e. relation symbols applied to as many terms as their arity.
Relations of terms are called atomic formulae

e Internal nodes are logical connectors, they come in two categories:

Vv

/\

Yy -

< Va

A |
A

0
Figure 2: A formula in Ly with ¢ the term of Figure|l] Leaves (relations of terms) are in blue.

1. Propositional logic connectors: V2, A2, =1, —2 respectively named “inclusive or”, “and”,“not”
and “implies”

2. Universal and existential quantifiers: Va (for all) and 3z (there exists) both of arity 1
and where z can be replaced by any variable in V

We write F, the collection of all £-formulae.

Example 10. Figure[2]|gives an example of formula where ¢ is the term of Figure[I] This formula is
of complexity 3. Note that the variable x does not appear below the quantifier Vax which, although
unusual when doing mathematics, is completely fine here.

Remark 11. A more minimalistic approach could construct logic formulae by using only two con-
nectors: the Sheffer strokeﬂ and the universal quantifier Vx. That is because the Sheffer stroke can
implement all propositional logic connectors and because, (3z)(¢) will be semantically equivalent

to —(Va)(—9).

Definition 12 (Boundedness). In a formula, an occurrence of a variable symbol is free if no
ancestor of that occurrence in the formula’s tree is a quantifier using that variable symbol. It is
bound otherwise. If any occurrence of a variable symbol is free then we say that the variable symbol
is free. A formula with no free variable symbol (i.e. all occurrences of used variable symbols are
bound) is called a sentence.

Example 13. In the formula of Figure [9] with ¢ the term defined in Figure [6}
e There is one bound occurrence of the variable symbol y (in the leftmost).
e There is one free occurrence of the variable symbol y (in the rightmost).

e The only occurrence of the variable symbol z is free hence z is free.

Shttps://en.wikipedia.org/wiki/Sheffer_stroke

https://en.wikipedia.org/wiki/Sheffer_stroke

2 Semantic

Assumption 14 (Relation). We have a naive concept of relation: a k-ary relation over a collection
C is a collection of k-tuples of elements of C.

Assumption 15 (Function). We have a naive concept of total function with domain Cy and co-
domain C;: it maps any element of the collection Cy to an element of the collection C;.

2.1 Models

So far, we have considered terms and formulae purely as formal objects. Now, we are going to give
them a meaning, to interpret them. A term is interpreted within a model:

Definition 16 (Model). A model 2 for a language £ (also called L-structure) is given by:
1. A non-empty collection of objects A, called the universe of A

2. An interpretation for each constant symbol: i.e. for each constant symbol c, an element c*
of A

3. An interpretation for each function symbol: i.e. for each k-ary function symbol f, a function
(Assumption 2 from A* to A

4. An interpretation for each relation symbol: i.e. for each k-ary relation symbol R, a k-ary
relation (Assumption [14) R over A

We say that 2 is a L-model.

Example 17 (The standard model of arithmetic). The standard model of arithmetic, 9N, is ex-
pressed in Ly := (0, S, +2, x2, <?), with universe N the collection {0,1,2, ...} and where constant
symbol 0 is interpreted by 0, function symbol S is interpreted as being the natural successor func-
tion (0 — 1, 1+ 2,...), function symbols +, x are interpreted to be 4+, X standard addition and
multiplication operations and < is interpreted as < the standard order relation.

Remark 18 (Reality). Note the shocking aspect of Example[17|and the repeated use of the word
standard. We are not constructing the standard model of arithmetic, we point our finger at it: we
claim its existence and treat it as part of our reality. Hence 9t becomes a real object, accessible out
there (as opposed to specific to one’s mind) by whoever is claiming its existence too.

Furthermore, in FOL, any tentative to construct 91 is doomed to fail as we will see that no finite
collection of axioms can characterize an infinite model up to isomorphism (i.e symbol renaming),
see Theorem 77.

2.2 Evaluating terms

Definition 19 (Variable assignment). Given a model 2 with universe A a variable assignment v
is a total function from V to A: it gives an interpretation of variable symbols.

Given a model and a variable assignment, it becomes easy to inductively evaluate terms:

Definition 20 (Term evaluation). Let 2 be a £-model with universe A and v a variable assignment.
Let evalg[v] (or just eval[v] when the model is given by context), the function from 7. (the set of
all L-terms) to A inductively defined as follows:

1. If the term ¢ is a constant symbol then eval[v](t) := t¥

2. If the term ¢ is a variable symbol then eval[v](t) := v(¢)
3. If the term ¢t if of the form f(t1,...,tx) then evalv](t) := f*(eval[v](t1),...,eval[v](tx))

Example 21. In the standard model of arithmetic, M, with v such that v(y) := 4, we have:
eval[v]((y x SS0)+50):=(4x2)+1:=9.

Remark 22. Note that eval[v] is putting an equivalence relation on terms: semantic “merges”
syntactically different trees into the same object which is described by the value returned by eval[v].
Computation starts playing a role here: evaluating a term is a computation.

2.3 Evaluating formulae: defining truth

Definition 23 (Boolean algebra). Let B := {True, False}. We define not from B to B the standard
negation: not(True) := False and not(False) := True. Similarly we define or, and, imp from B>
to B the standard “inclusive or”, “and”, “implication”. “Inclusive or” means that the value False is
reached only for or(False, False) := False.

Remark 24. The truth table of standard implication is not immediate: imp(False,False) :=
imp(False, True) := imp(True, True) := True and imp(True, False) := False. The intuition
is as follows: anything can be deduced from false and only true can be deduced from true.

We can now define truth in a structure: we simply have to recursively evaluate our formulae’s
trees under the rules of Boolean algebra.

Definition 25 (Truth evaluation). Let 2 be a £-model with universe A and v a variable assignment.
Let truthgy[v] (or just truth[v] when the model is given by context), the function from F, (the set
of all £L-formulae) to B inductively defined as follows:

1. If the formula ¢ is of the form ¢; = to then truthv](¢) := True iff eval[v](¢1) is equal to
eval[v](t2)

2. If the formula ¢ is of the form R(t1, ..., tx) then truth[v](¢) := True iff the k-tuple (evallv](¢;)
is in the collection R*

3. If the formula ¢ is of the form —(¢’) then truth[v](¢) := not(truth[v](¢’')). Similar definition
for symbols V, A and — respectively associated to operators or, and and imp (Definition [23)).

4. If the formulae ¢ is of the form (Vz)(¢) then truth[v](¢) := True iff for all a in A,
truthfv,.,](¢) := True with v, ., the same assignment as v except for v;..(z) = a

5. If the formulae ¢ is of the form (3x)(¢) then truth[v](¢) := True iff there exists a in A such
that truth[v,.,](¢) := True with v, ., the same assignment as v except for v,.,(z) :=a

Please refer to Sectionwhich defines the usual notation associated to truth: 20 F ¢[v], AFE ¢,
AEX[v], AET and T ET.

Remark 26. Note also that for sentences (formulae without free variable, Definition [12)), truth[v]
is independent of v. In consequence, inside a model, truth of sentences is absolute: a sentence
evaluates either to True or False. The famous concept of “undecidability” that we will explore in
Section ?? is not an alternative to truth (see Remark ?7).

, .. yeval[v](tg))

Remark 27. The definition of truth can be a deception at first sight. Indeed, at each Point of the
definition, we are doing the same thing: we explain what truth is by taking it to the meta level
(note for instance the absence of symbols at Point 1 when we say “is equal to”). While it maybe
feels alright for Point 3, where we are simply applying Boolean algebra operators (i.e. doing a finite
computation), Point 4 can feel like we are cheating. How can we know, in an infinite universe, if
something holds “for all” the elements? The point is that when defining truth, we are not at the
level of “knowing” (that will be the goal of proofs), We are at a level where we are confronted to a
reality which is independent of any tentative to describe/axiomatize/prove. And it is the conclusion
of Godel incompleteness theorems (see Theorem ?7?) that, given a “reasonable” system of axioms,
one cannot prove all true statements in 1.

Remark 28. In connection to the previous Remark, we can see an obvious difference between
evaluating terms and evaluating formulae. While they are both finite objects, one can evaluate a
term with a computer but cannot evaluate a formulae with a computer: for infinite models we will
get stuck at each unbounded (V) e.g. for instance, in 91, any (Vz) not followed by a bounding
condition on z (of the form z < t).

A computer can try to evaluate formulae. Indeed, because (Vz)(¢) is semantically equivalent
to =(3z)(—¢), a computer can try to find a counter-example to ¢ by looping through all z. But
nothing says if the computer will stop (in fact if (Vz)(¢) is true it will never stop). We start seeing
here a link between the Halting Problem of ideal computers (e.g. Turing Machines) and FOL.

Finally, valid £-formulae are formulae which are true in any £-model for any variable assignment:

Definition 29 (Valid formula). A L-formula ¢ is valid iff for any £-model 2(and variable assigne-
ment v we have: truthy [v](¢) equals True. We write F ¢ (see Section [2.4)).

Example 30. By Definition given any model and variable assignment the formula z = z
evaluates to True. Hence the formula x = z is valid, i.e. we have F x = z. Hence we also have
F (Vx)(z =) which is a canonical example of valid sentence (formula with no free variable).

Definition 31 (Canonical tautology and contradiction). The canonical tautology is the formula
T := (Vz)(z = z) which can be expressed in any FOL language and is always valid (see Example.
The canonical contradiction is 1 := —((Va)(z = x)) which can be expressed in any FOL language
and evaluates to False in any model for any variable assignment.

2.4 Summary: notation for truth

In logic, very compact notation are commonly used in order to have, later down the road, compact
theorem statements. We summarize all the notation related to truth here so that the reader can
come back to this Section when needed.

In the following, given a language £ (Definition , ¢ is a L-formula (Definition @7 Y and I' are
collections of L-formulae, v a variable assignment (Definition , 2 is a L-model (Definition .
We define the following notation:

1. 2 E ¢[v] iff truthy(v](¢) := True (Definition 25). This statement (meta-statement) reads
“model 2 satisfies formula ¢ with assignment v”

2. A E ¢ iff we have A E ¢[v] for all assignments v. It reads “model U satisfies formula ¢”

3. A E X[v] iff we have A F ¢[v] for all ¢ in X
4. A E X iff we have 2 E X[v] for all assignments v

5. X E I iff in any model 9B such that 8 £ ¥ we have B E I'. It reads “X logically implies
I'”. If ¥ contains only one formula ¢ we write ¢ F I', similarly if I contains only ¢ we write
YEqY

6. 0 E ¢ or F ¢ when ¢ is valid (i.e. true in every model for every assignment, Definition .
Note that it is a particular case of the previous Point

2.5 Equivalence between models

There are principally two notions of equivalence between two £-models 2l and 8: isomorphism,
written 2 = B and elementary equivalence written 2 = B. Isomorphism implies elementary
equivalence but the converse does not hold.

Isomorphism corresponds to a renaming operation which preserves constants, the structure of
terms and relations:

Definition 32 (Isomorphism). Two L-models 2 and B with respective universes A and B are
isomorphic, and we write 2 = 9B, iff there exists a bijection i from A to B, called isomorphism,
such that:

1. For all constant symbols ¢, we have i(c*) := c®

2. For all k-ary function symbols f and ay, . . ., ax in A* we have: i(f*(ay,...,ax)) := f2(i(a1),...,i(ax))

3. For all k-ary relation symbols R and a1, ..., ay in A* then (ay,...,a;)isin R®iff (i(ay),...,i(ax))
is in R®

Remark 33. Although isomorphism corresponds “only” in a renaming procedure, it is highly non-
trivial, even in the finite case, to decide whether two models are isomorphic or not. For instance, the
problem of deciding whether two finite graphs (which are finite models of the language of graphs)
are isomorphic or not is not known to be solvable by a machine in polynomial tim(ﬂ (it is solvable
by a machine in exponential time as it “suffices” to try all the permutations of the first graph until
we eventually find, or not find, the second graph). We can relate this discussion to the fact that
we already know, when practicing mathematics, that showing that two things “are the same” can
require a lot of efforts.

Elementary equivalence is intimately related to truth: two £-models are elementary equivalent
if the collection of formulae that they satisfy are the same. If they have the same theory:

Definition 34 (Theory of a model). Let 2 be a £L-model. The theory of model 2 is Th(2() the
collection {¢ | ¢ L-formula such that A F ¢}.

Definition 35 (Elementary equivalence). Two L-models 2 and 9 are elementary equivalent, and
we write A = B, iff Th() and Th(B) are the same.

SMysteriously enough, it is one of the only problems, with integer factorisation, which is: (a) in the complexity
class NP, (b) not known to be in P, (¢) not known to be NP-complete (i.e. able to simulate all the problems of the
class NP), see https://en.wikipedia.org/wiki/Graph_isomorphism.

https://en.wikipedia.org/wiki/Graph_isomorphism

Let’s state the relation between those two notions:
Theorem 36. Let 2 and 9B be two L-models. Then A2 B=A=Bbut A=B# A% B.

Sketch proof. The proof that A =2 B = A = B can be done by induction on formulae. Indeed,
isomorphism preserves the structure and semantic of formulae so the proof is not hard.

However, at this point we don’t really have any tools to show that A = B A A = B. We can
only informally mention that, in the language of arithmetic, Ly := (0, S, +2, x2, <?2), there exists a
non-standard model of arithmetic 91*, elementary equivalent to 91, but whose universe contains an
element w (called non-standard integer) such that the sentence ¢,, := t,, < w evaluates to True for
all n where t, := S...50. Non-isomorphism follows directly: there is no suitable assignment for

n times
w in the universe of 91. The essence of why we have 91 = 91" is because the language of arithmetic,

Ly, is not rich enough to “talk about” w. True statements are the same in 91 and 91* because they
cannot involve w (or any non-standard integer) in what they are stating, they are “blind” to its
existence, see TODO. O

Models of arithmetic are models elementary equivalent to 91 (given the proof of the previous
Theorem, they are not necessarily standard, i.e. isomorphic to N):

Definition 37 (Models of arithmetic). A model of arithmetic is a Ly-model elementary equivalent
to 9.

Remark 38. There seems to be a confusion where “model of arithmetic” sometimes refers to a
model in which, for instance, Peano axioms (PA) are satisfied (see Section [53)). But, by Godel
theorems (Section , not all models of PA are elementary equivalent to 9%: there exists some
sentences true in 9 (i.e. what we see as arithmetical truths) which are not true in some other
model satisfying PA and vice versa. See Section [3|and Section [7]

3 Proofs

Defining deduction in FOL, athough it will match with what we intuitively regard as a proof, is
not immediate and contains technical difficulties. That is maybe because the act of “deducing”
something is intrinsically technical. We leave most of the technical aspects (namely the logical
axioms and deduction rules of FOL) of FOL deduction to Appendix ?? which can be ignored at
first. Note that, because we are more interested in reasoning about proofs than making proofs
themselves, it is not completely crucial to be aware of all the details of the FOL deduction system
and, in some sense, the reader who practices mathematics is, at least inconsciously, familiar with
these details. Historically, there has been multiple different approaches to formalizing deduction in
FOL, such as natural deduction or sequent calculus, but, we follow a different approach which is the
one of [1[7]

Importantly, note that all the constructions of this Section are mainly formal: we are only
defining a formal system which generates objects that we call proofs. In particular, while we
prepare the ground for it, we are not connecting the concept of proof to the concept of truth yet.
That is the goal of Section [4]

"The interested reader will find all the technicalities that we omit in [I].

10

3.1 Defining proofs

Intuitively, a proof is not a crazy object: it can be seen as a finite, ordered, succession of formulae,
where some formulae are azioms (i.e we do not have to prove them), and where the other formulae
can be “logically deduced” from the preceding ones. Here are the desirable properties that our
deduction system, which is composed of logical axioms and deduction rules, will have:

1. A proof involves only a finite number of formulae and uses a finite number of deduction rules
(or inference rules).

2. An algorithm can decide whether a formula is a logical axiom or not and if a given application
of a deduction rule is correct or not.

3. Altogether, an algorithm can decide whether a proof is correct or not: it recognises axioms
and is able to verify each deduction rule.

Finding a proof can be hard and can require imagination but checking the proof is “easy” (i.e.
mechanical, algorithmic). Formally, proofs are defined as follows:

Definition 39 (FOL logical axioms). Let A be the set of L-formulae called FOL logical azioms.
Appendix 77 gives all the logical axioms of FOL.

Example 40. For instance, for any variable symbol z, the formula z = x is a logical axiom of FOL.
Apart from dealing with equality, the other logical axioms of FOL describe the use of quantifiers
and allow universal instantiation and existential generalization, see Appendix 77.

Definition 41 (FOL deduction rules). We have a collection of ordered pairs (T, ¢), called FOL
deduction rules, where T is a finite collection of L-formulae and ¢ a L-formula. Appendix ?7 gives
all the deduction rules of FOL.

Example 42. An important example of class of deduction rules is propositional consequence (rules
of “type PC”). Propositional consequence embeds all the theorems of propositional logic. For ex-
ample, modus ponens, for two sentences ¢ and ¢ then ({¢,¢ — 1},¢) is a deduction rule of
type PC. Verifying PC rules amounts to replace (in the right way, see Appendix ??) formulae by
propositional variables, here, ({A, A — B}, B) and verify that, under the rules of Boolean alge-
bra (Definition , any truth assignment which satisfies both A and A — B also satisfies B (i.e.
evaluates B to True). In other word, to verify that (A A (A — B)) — B is a tautology (true for
any truth assignment). Verifying propositional tautologies can be done algorithmically by looping
over all the 2™ truth assignments of the n propositional variables and evaluating truth at each step.
Note however that there is no known efficient algorithm (polynomial time in n) for solving this
problem in generaﬂ The other class of FOL deduction rules deals with how to “safely” manipulate
universal and existential quantifiers, see Appendix ?7.

Definition 43 (Proof). Let X be a collection of L-formulae (called theoretical axiom or nonlogical
azioms) and D a finite ordered sequence of L-formulae (¢1, ¢2,...,¢,). Then D is a proof of ¢,
from ¥ if for each 1 <7 < n:

1. ¢; isin A (is a logical axiom) or

8Related to the problem called SAT in complexity theory, which is complete for the class NP: in particular,
any polynomial time running algorithm can be reformulated as corresponding to particular instances of SAT, see
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem.

11

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

2. ¢; is in ¥ (is a nonlogical axiom) or
3. There is a deduction rule (T, ¢) such that I' C {¢1,...,¢;—1}.

We write ¥ - ¢ to mean that there is a proof D from ¥ of ¢ (¢ is the last formula of the proof D).
It reads “X proves ¢”.

Remark 44. Logical axioms are related to the internal mechanics of FOL deduction, together with
deduction rules, they constitute the essence of how FOL is modelling mathematical deduction (see
Appendix ??). Nonlogical axioms are specified by mathematicians when they start axiomatizing
their theories — see for instance the axioms of arithmetic, Definition [53] If we want all proofs to be
verifiable by a computer we need to guarantee that nonlogical axioms, like logical axioms, can be
recognised by a decision procedure.

Definition 45 (Thmy). Let ¥ be a collection of £L-formulae. Then, the collection of formulae that
can be deduced from ¥ is written Thmy := {¢ | ¢ is a L-formula and ¥ F ¢}. The set Thmsy is
said to be an aziomatic theory. Elements of Thmy, are called theorems.

Remark 46. Note that Thmy is countable and, because verifying proofs is an algorithmic proce-
dure, it is possible to algorithmically enumerate (also called recursively enumerate) all valid proofs
starting from ¥ and so, all the theorems in Thmsy. However, for any given ¢, deciding whether ¢ is
in Thmsy, or not wont be possible in the general case (see Remark ?7). Said otherwise, while we can
always algorithmically enumerate Thmsy, in general, we cannot know for sure if some given ¢ will
eventually appear in the enumeration or not. Said otherwise, in general, we cannot algorithmically
enumerate the complement of Thmy (because if we always could, the previous point would be
settled: ¢ would eventually appear in enumerating Thmy or its complement providing us with a
decision procedure).

3.2 Properties of the proof system

A good way to get more familiar with FOL deduction system is to be aware of its properties. We
list some of them here. Note again that we are not yet connecting the concept of proof to the
concept of truth. We are purely talking about the properties of a formal system. In the following,
3 is an arbitrary collection of L-formulae and ¢ a formula.

Lemma 47 (Universal closure). ¥ F ¢ iff ¥ F (Va)(¢)

Remark 48. Some authors require theorems (and axioms) to be sentences (no free variables)
instead of formulae. This restriction does not really matter in FOL because of the above lemmas
which implies that the universal closure of any formula in Thmy; is also in Thmy. By the same
argument, we can replace each formula of ¥ by their universal closure without really changing the
collection of formulae that we can prove.

Theorem 49 (Deduction theorem). Let 6 be a sentence (no free variables). Then:
Y=ot BU{0}F ¢

Remark 50. The deduction theorem may sound a bit tautological at first sight. However its proof is
non trivial (in the <= direction) and it validates something that we do often when doing mathematics.
When we want to prove an implication, we can add the premise to our set of hypothesis and derive

12

the conclusion. The subtle point is that, by doing so, we can reconstruct a valid proof (seen as a
formal object) of the implication we were starting with. Finally, because we have not insisted on
the details of FOL deduction (see Appendix ??) we cannot really justify why 6 is asked to be a
sentence. At the intuitive level we can only say that it is because it prevents making any kind of
assumptions on the variables present in 6.

Theorem 51 (Proof by contradiction). Recall that L := —=((Vz)(x = x)). We have:
1. SU{Ll}F¢
2. k¢t TU{-¢}F L

Remark 52 (Intuitionism). The first Point says that you can prove anything from something false
(L is the canonical “false” as it is expressible in any FOL language and evaluates to False in all
models). The second Point says that FOL deduction admits proof by contradiction. This point
has been source of intellectual polemics in the 20*" century as the school of intuitionism (see [3])
refuses the idea of proof by contradiction. The reason being that it allows non-constructive proofs:
showing that an object exists without constructing it. Famously, for instance, the non-constructive
proof of “there exists a, b irrational numbers such that a® is rational”, see [2]. In that particular
case, constructive proofs are also known (take a = v/2,b = log,(9), we have a” = 3) however there
exists cases where a non-constructive proof exists but no constructive proof is known, see [2].

3.3 Axioms of arithmetic

The collection of non-logical axioms which, historically, has accompanied the development of FOL,
are the axioms of arithmetic. Also called “Robinson axioms” and expressed in the language of
arithmetic Ly := (0, 81, +2, x2, <?) they are the following:

Definition 53 (The axioms of arithmetic). The axioms of arithmetic is the finite collection N
composed of the following Ly-sentences:

1. (Vz) ~(Sz =0)

2. (Vx)(Vy) [Sz = Sy — = = 9]

3. (V) [z + 0=z

4. V2)(Vy) [z + Sy = S(z + y)]

5. (Va) [z x 0= 0]

6. (Vz)(Vy) [z x Sy = (z X y) + z]

7. (Vz) =(z < 0)

8. (Va)(Vy) [z < Sy +> (x <y Va=y)]
9. Vo)(Vy)[zx <yVa=yVy< x|

13

Remark 54. The axioms of arithmetic are quite weak. For instance, from N, it is not possible
to prove the commutativity of 4+. Anticipating Section [7] we say that “the commutativity of + is
independent of N” or “the commutativity of + is undecidable in N”. Hence we don’t have equality
between Thmy = {¢ | N F ¢} and Th(N) := {¢ | N E ¢} since commutativity of addition is
verified in N (the standard model of arithmetic, see Example . One could question the validity
of these axioms if we can’t even prove that x +y = y + x. However, it is the whole point of FOL
and Godel theorems, to show that for any reasonable axiomatization of arithmetic, such sentences
exist: they are true in 91, but cannot be derived from the axioms. Not all arithmetical truth are
provable, said otherwise, there is no reasonable X such that Thmsy is equal to Th(N), see Section
Nevertheless, the axioms of N are powerful enough to show some natural arithmetical facts such
as NFa+b=a+ b. For any a and b natural numbers, a 4 b the standard integer addition and a
the Ly-term S...S50. See [I] (Lemma 2.8.4) for other example of deductions from N.

a times

Peano’s axioms add the induction scheme to the axioms of arithmetic:

Definition 55 (Peano’s axiom). The axioms of Peano, PA, are N, the axioms of arithmetic together
with the induction scheme: [¢(0) A (V) (¢p(z) = ¢(Sx))] — (Va)d(x) for all Ly-formula with only
one free variable x. Contrary to N, the collection PA is not finite.

Remark 56. So far we never introduced notation such as ¢(0) which only means, assuming ¢ has
only one free variable x, “replace all occurrences of the variable x by the term 0”.

An other historically important collection of axioms are ZF the axioms of set theory, expressed
in the language of set theory which consists only of one binary relation symbol: Lgr := {€}. For
instance, the existence of the empty set is the axiom JzVy —(y € x).

3.4 Summary: properties of axiomatic theories

Let X be a set of formulae and Thmy := {¢ | ¥ F ¢} be its associated axiomatic theory (Defini-
tion . The following are properties that Thmy can have:

1. Consistency: there is no derivation of L := —(Va)(z = z) from X. We write X I/ L. Note
that next Section will prove that the consistency of a collection of axioms is equivalent to
them having a model (Theorem i.e. X is consistent iff there exists a model in which ¥ is
satisfied.

2. Enumerability: there is an algorithmic procedure to enumerate all deductions in Thmsy.
Note that, given FOL proof system, if the set of nonlogical axioms ¥ is decidable (i.e. a
computer can recognise nonlogical axioms) then Thmy is enumerable.

3. Decidability: there is an algorithmic procedure to determine whether a given ¢ is in Thmsy
or not.

4. Completeness: any ¢ is either proved (¢ is in Thmsy) or refuted (—¢ is in Thmy). We have
that (Completeness + Enumerability) implies Decidability: in order to decide whether or not
¢ is in Thmy or not, enumerate Thmy until, by completeness, you find a proof of ¢ or —¢.
Decidability implies Enumerability but it does not imply Completeness: we still can have ¢
such that neither ¢ or —¢ is in Thmy.

14

4 Soundness, completeness and compactness of FOL

We have spent some efforts in order to define the notions of truth and proofs and it is time to start
connecting them to one another. In this section, we are going to prove fundamental statements
about FOL itself: FOL is sound, complet(ﬂ and compact. Soundness of FOL is a property that you
would hope to get in any logical system: if a formula ¢ is deduced from ¥, then ¥ logically implies
¢, i.e. it is true in all models satisfying >. Completeness is a property which is less immediate:
it states that if a statement if true in all models satisfying a collection of axiom then there is a
proof of it. Completeness is equivalent to the existence of a model for any consistent set of axioms
(Lemma , it is worth mentioning that some logics, Second Order Logic for instance, are not
complete (and not compact).

Theorem 57 (Fundamental theorem of FOL). Let 3 be a collection of L-formulae and ¢ a £-
formula. Then X F ¢ iff ¥ F ¢.

Proof. e Soundness: if ¥ F ¢ then ¥ F ¢. This is not the hard direction. Proceed by induction
on the complexity of ¢ and use the fact that FOL logical axioms are valid (true in all models,
for all assignments) and that FOL deduction rules preserve truth. See [I] for the entire proof.

e Completeness: (a) if ¥ F ¢ then ¥ F ¢. This requires more work. First notice that the
statement is equivalent to: (b) if ¥ F L then ¥ L. This is because from (b) we have: (c) if
YU{-¢} E L then XU {—¢} F L, then by supposing ¥ F ¢ we get XU {—¢} E L which from
(c) gives XU {—¢} F L which, because FOL admits proof by contradiction (Theorem , we
get X F ¢.

Note that the statement: (b) if ¥ F L then ¥ F L reads “if no model satisfies ¥ then X
is inconsistent”. Which by contraposition amounts to: (d) “if ¥ is consistent then ¥ has a
model” (i.e. there is model in which ¥ is satisfied). There “only” remains to construct such a
model, this is the goal of Lemma

O

9Completeness of First Order Logic is not related to the completeness of an axiomatic theory as defined in
Section The fact that those words are the same can create a confusion at first.

15

Lemma 58 (Henkin model). Let ¥ be a consistent set of L£-axioms, meaning ¥ I/ L —i.e. there
is no deduction of 1 := —(Vz)(x = x) from 3. Then there exists a £-model 9 such that I E 3.
The model constructed in this Lemma is called Henkin model of ¥ or syntactic model of 3.

5 Computability

5.1 Algorithms

Godel incompleteness theorems are intimately linked to the existence of functions “that we cannot
compute”. In order to highlight this link we need to talk about the basis of computability theory.
In this document, we already have used the concept of algorithm (for instance in Section (3| when
defining proofs) quite loosely, with no formal attempt do define what they are. We are going to go
further in that direction by assuming out loudly that you intrinsically know what they are:

Assumption 59 (Algorithm). We have a naive concept of algorithm.

Remark 60 (Church-Turing thesis). The fact that, with Assumption [59 we allow ourselves to talk
about algorithms without a formal, mathematical, definition is motivated by the Church-Turing
thesis. Indeed, historically, a lot of different models were invented to talk about algorithms: Turing
machines, Church’s lambda-calculus, Gédel’s recursive functions, Minsky’s counter machines, Post’s
tag systems, Generalised Collatz Maps, elementary 1D cellular automaton “rule 110", Conway’s
“game of life”, and more. However, although these models can be very different looking, they are
all, as far as algorithms are concerned, equivalent: there is no computation that one of these models
can do that another cannot dﬂ and that is because they can all simulate one another. This leads to
Church-Turing thesis which is of a philosophical nature: the concept of algorithm is more essential
than the actual model you use to specify thenﬂ More informally: algorithms are independent of
the programming language you use. We could make another analogy with numbers: the concept of
number is independent of the base you use to represent them.

If we do not place ourselves in a specific model of computation, let’s give some properties that
algorithms have:

1. (Program). An algorithm, in a given model of computation, admits a finite description
called its program. Importantly, the set of programs of a given length is finite too.

2. (Input). An algorithm admits a finite (possibly empty) input.
3. (Halt). An algorithm, on a given input, either halts or does not halt.

4. (Output). An algorithm, on a given input, if it halts, delivers a (possible empty) output.

Definition 61 (Computable function). A total function f : N — N is said to be computable if
there is an algorithm such that for any input « € N, the algorithm halts and produces the output
f(z) € N. The set of computable functions is denoted by C C NY.

10Between models, there can be differences in time/space efficiency but that is the topic of Complezity theory.

1 The model of computation needs to be powerful enough (for instance Finite State Automata cannot simulate
arbitrary Turing Machines) and if it is, is then called a Turing-complete model (Finite State Automata are not
Turing-complete).

16

Remark 62. By Church-Turing thesis (Remark the set of computable functions is independent
of the model of computation which is used. The concept of algorithm is more essential than the
concept of computable function since computable functions do not account for algorithm which do
not halt on all inputs.

Example 63. Very early in life, we learn that 4+ : N> — N is a computable functiodl—_z-} we are
taught the algorithm which performs the addition of two numbers (written in base 10).

5.2 Non-computable functions

Because the set of programs of a given length is finite, the set of all programs is countable. Hence,
the set of computable functions f : N — N is countable too. Thus, because N — N is not countable,
there must exist some non-computable function, i.e. a function for which no algorithm can give
the value of f(z) for all z. Can we give an example of such an uncomputable function? Turing
gave a famous, canonical, answer: the halting problem. The halting problem, which is the function
deciding if an arbitrary program halts on an arbitrary input, is not computable:

Theorem 64 (The halting problem). Let H = {E(p, x) | such that program p € P halts on input z €
N} with £ : P x N — N some computable encoding for program/input pairs in the Turing-complete
model of computation in use. Then the halting problem, h : N — {0, 1}, which is the characteristic
function of H, is not computable.

6 Expressivity of FOL

7 Godel incompleteness theorems

Theorem 65 (First incompleteness theorem). Suppose that A is a consistent and decidable set of
nonlogical axioms expressed in Ly. Then there is a Ly-sentence 0 such that 91 F 6 but At/ 6.

8 Going further

References

[1] Christopher Leary and Lars Kristiansen. A friendly introduction to mathematical logic.
Milne Library, SUNY Geneseo, Geneseo, NY, 2015. URL: https://minerva.geneseo.edu/
a-friendly-introduction-to-mathematical-logic/.

[2] Wikipedia. Constructive proof — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Constructive},20proof&oldid=969930319, 2020. [Online; accessed
31-July-2020].

[3] Wikipedia. Intuitionism — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/
index.php?title=Intuitionism&oldid=955009666, 2020. [Online; accessed 31-July-2020].

12Note that N? is bijection with N

17

https://minerva.geneseo.edu/a-friendly-introduction-to-mathematical-logic/
https://minerva.geneseo.edu/a-friendly-introduction-to-mathematical-logic/
http://en.wikipedia.org/w/index.php?title=Constructive%20proof&oldid=969930319
http://en.wikipedia.org/w/index.php?title=Constructive%20proof&oldid=969930319
http://en.wikipedia.org/w/index.php?title=Intuitionism&oldid=955009666
http://en.wikipedia.org/w/index.php?title=Intuitionism&oldid=955009666

	Syntax
	Language
	Terms
	Formulae

	Semantic
	Models
	Evaluating terms
	Evaluating formulae: defining truth
	Summary: notation for truth
	Equivalence between models

	Proofs
	Defining proofs
	Properties of the proof system
	Axioms of arithmetic
	Summary: properties of axiomatic theories

	Soundness, completeness and compactness of FOL
	Computability
	Algorithms
	Non-computable functions

	Expressivity of FOL
	Gödel incompleteness theorems
	Going further

