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Statement of the main result

In this paper, we propose a complete description of the topology of real analytic planar
curves in the neighborhood of a singular point.

Denote by R{x, y} the factorial ring of germs of real analytic functions defined in some
neighborhood of (0, 0) ∈ R2. The germ of a real analytic planar curve is defined by an
equation F (x, y) = 0, where F ∈ R{x, y} vanishes at the origin. If F is an irreducible
element in this ring, the topology of the curve CF defined by F is well known. Either it
only contains the origin (as for x2+y2 = 0) or there is a local homeomorphism of the plane,
mapping CF to (the germ of) a straight line (as for instance in x3− y2 = 0). In this second
case, CF intersects small circles centered at the origin in exactly two points.

In general F is a product F n1
1 · · ·F

nk
k of irreducible non-associated factors Fi. Our curve

CF is therefore the union of the CFi
’s, which are usually called the branches of CF . Since

we are only interested in the topology of CF , we can discard those Fi’s such that CFi
only

contains the origin. Two distinct factors Fi yield two branches which only intersect at the
origin. Hence the analytic curve CF intersects small circles centered at the origin in an even
number of points, grouped in pairs, each pair being associated to a branch. This yields
a chord diagram which is by definition an even number of distinct points on the circle,
grouped in pairs, up to an orientation preserving homeomorphism of the circle. Such a
diagram is pictured by a certain number of chords with distinct endpoints in a circle.
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Figure 1: A curve with three branches and its associated chord diagram

The main theorem of this paper characterizes the chord diagrams arising from some
analytic curve CF .

Theorem. A chord diagram is associated to some analytic curve if and only if it does not
contain one of the “forbidden diagrams” shown in Figure 2 as a sub-chord diagram.

Figure 2: Forbidden diagrams: , , , and Cn (n ≥ 5)

The genesis of this paper

Consider four distinct polynomials P1, P2, P3, P4 in R[x]. Order them in such a way that
P1(x) < P2(x) < P3(x) < P4(x) for small negative values of x. Then define the permuta-
tion π on {1, 2, 3, 4} such that Pπ(1)(x) < Pπ(2)(x) < Pπ(3)(x) < Pπ(4)(x) for small positive
values of x. In 2009, Maxim Kontsevich explained to the first author EG that among
the 24 permutations on {1, 2, 3, 4} exactly two cannot be obtained by this construction:
(1, 2, 3, 4) 7→ (2, 4, 1, 3) or (3, 1, 4, 2). EG easily generalized this to any number of polyno-
mials and proved that a permutation on {1, . . . , n} can be obtained from n polynomials if
and only if it does not “contain” one of Kontsevich’s permutations. This was published as
an elementary paper [5]. We will give a different proof later in section 2.

It was then very natural to look at the topological configurations of the branches of a
real analytic curve in the neighborhood of a singular point. Trying to solve this problem,
EG found an explicit algorithm determining if a given chord diagram is analytic, i.e. is
associated to the branches of some real analytic singular point. In particular, it followed
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that the above forbidden chord diagrams were indeed not analytic. One can always delete
some branches of an analytic curve, so that a sub-chord diagram of an analytic diagram
is of course analytic. In particular, a diagram containing one of the forbidden examples is
non-analytic. The question of knowing whether these examples were the only “minimal”
forbidden configurations remained open.

Since this proof was enjoyable and involved classical methods, EG decided to write a
book proposing a leisurely promenade towards this partial result, intended for undergrad-
uate students. The second author CS was such a student and read a preliminary draft of
that book. He proposed to look at the problem from another side, explained below, and
this new point of view enabled both authors to complete the proof of the above theorem
in a joint effort. Therefore the final version of the book contains an additional chapter,
describing this result [6].

The present paper contains two sections. The first section provides an algorithmic
description of the analytic chord diagrams and the second uses the first to prove the main
result. This paper is very close to the corresponding chapters of the book. We essentially
“compressed” these chapters in order to get more efficiently to the main goal.

1 Analytic chord diagrams: an algorithm

In this section, we get an algorithmic description of the analytic chord diagrams, that we
defined as those which are determined by the branches of planar real analytic curves.

1.1 Polynomial interchanges: algorithmic description

The only purpose of this subsection is to discuss quickly the much simpler situation of
permutations arising from polynomials in R[x] which were the starting point of this paper.
This serves as a motivation and gives a pattern for the general strategy, somewhat different
from that in [5].

Let π be a permutation of {1, . . . , n} (n ≥ 2). We say that π is a polynomial interchange
if there exist n polynomials P1, . . . , Pn in R[x] such that

P1(x) < P2(x) < · · · < Pn(x)

for small negative x and

Pπ(1)(x) < Pπ(2)(x) < · · · < Pπ(n)(x)

for small positive x.
We describe an elementary algorithm that determines if a given permutation is a poly-

nomial interchange. In the next section, we will characterize polynomial interchanges as
those permutations which do not contain the two forbidden Kontsevich permutations.

Lemma. For any polynomial interchange, at least two consecutive integers have consecu-
tive images.
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The proof is easy. Denote by v(P ) ∈ N ∪ {∞} the valuation (at 0) of a polynomial
P ∈ R[x], i.e. the lowest degree of a non zero monomial in P (and ∞ if P = 0). Choose
polynomials P1, · · · , Pn as above. For every integer N , the relation v(Pi − Pj) ≥ N is an
equivalence relation RN on {1, . . . , n}. Each equivalence class I ⊂ {1, . . . , n} is an interval.
Indeed, suppose that i < j < k and that i, k ∈ I. We know that Pi(x) < Pj(x) < Pk(x)
for small negative x. It follows that v(Pj −Pi) ≥ v(Pk −Pi) ≥ N so that j ∈ I. The same
argument, for small positive x, implies that π(I) is also an interval. Let N0 be the largest
value of N for which equivalence classes of RN are not reduced to singletons. Let I be an
equivalence class of RN0 with at least two elements. Since all the valuations v(Pi − Pj)
are equal to N0 for i, j in I, the permutation π is either increasing or decreasing from I
to π(I), depending on the parity of N0. The lemma follows if one chooses two consecutive
elements in I. �

Note in particular that the two permutations (1, 2, 3, 4) 7→ (2, 4, 1, 3) or (3, 1, 4, 2) are
not polynomial interchanges.

Theorem. The following algorithm decides if a permutation π is a polynomial interchange:

1. If no pair of consecutive integers have consecutive images then π is not a polynomial
interchange.

2. If there is such a pair, merge it to a singleton. This produces a permutation with one
object less. Continue.

3. If you end up with the trivial permutation on one object, then the original permutation
was a polynomial interchange.

Figure 3: Merging a pair of consecutive elements

If π is a polynomial interchange and if {i, i + 1}, {π(i), π(i + 1)} are merged into
singletons, we produce a permutation π′ on n − 1 objects which is obviously another
polynomial interchange associated to the polynomials P1, . . . , Pi, Pi+2, . . . , Pn. Conversely,
given a polynomial interchange associated to P1, . . . , Pi, . . . , Pn−1, one can define

P ′i (x) = Pi(x) + (−x)N

for a sufficiently large value of N , even or odd, and consider the permutation associated
to the n polynomials P1, . . . , Pi, P

′
i , . . . , Pn−1. This shows that if the merged permutation

is a polynomial interchange, then so was the initial permutation. �
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1.2 Chord diagrams

One can think of a chord diagram as a cyclic word of length 2n in which every letter
occurs exactly twice (the labels of the letters being irrelevant). To be more pedantic (and
precise), we are discussing fixed-point free involutions on Z/2nZ up to conjugacies by cyclic
permutations. We can also draw n chords in a circle.

The total number of chord diagrams of length 2n has been studied in many papers, like
in [12] with strong motivations from knot theory. The problem would be easy if, instead
of a cyclic word, we looked for standard (non-cyclic) words of length 2n in which every
letter occurs exactly twice and whose names are irrelevant. Indeed, write the first letter of
the word and then choose any of the remaining 2n− 1 locations for the other letter which
is identical to the first. Then write the second letter in the first available free place and
choose the other identical letter in any of the 2n− 3 remaining locations. Etc. Therefore
the total number of these words is (2n−1) · (2n−3) · · · 3 ·1. These numbers are sometimes
called double factorials and denoted by (2n− 1)!!.

It would be tempting to divide (2n− 1)!! by 2n to take into account the cyclic permu-
tations, but some words admit symmetries and this makes the exact combinatorics more
subtle. In any case, it follows from these considerations that the number of chord diagrams
of length 2n grows super-exponentially in n. We will see that a very tiny proportion of
chord diagrams are analytic, in the sense that they arise from the singularity of a planar
analytic curve.

1.3 A necessary condition

We will say that a chord in a diagram is solitary if it connects two consecutive points of
the diagram as in the first picture in Figure 4. Two chords are parallel (resp. antiparallel)
if they are as in the second (resp. third) picture, i.e. if the corresponding letters a, b occur
in the cyclic word as · · · ab · · · ba · · · (resp. · · · ab · · · ab · · · ). Finally, two chords as in the
fourth picture constitute a pitchfork (· · · a · · · bab · · · ). Letter a is the stick and letter b is
the fork. With these notations we can state the fundamental lemma.

Figure 4: solitary, parallel, antiparallel and pichfork

Fundamental lemma: Any analytic chord diagram (with at least two chords) contains a
solitary chord, a pair of parallel or an antiparallel chords, or a pitchfork.
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As a simple corollary, there is no singular analytic plane curve whose branches intersect
a small circle as in Figure 5.

A A
B

B

C

C

D

D E

E

Figure 5: A forbidden diagram with five chords.

Start with some singular point of some analytic curve in the (real) plane. Blow it up a
first time1. The result is a curve in some Moebius band, whose singular points are on the
exceptional divisor, core of the band. If things go well, the singular point splits into several
singular points, presumably simpler. Let us blow up all of them. It could happen that
after one blow up, there is still a unique singular point on the divisor. Then, blow it up a
second time. Let us continue the blowing up process as many times as necessary. We know
that after some time, the singularity will be resolved. This means that the strict transform
of the initial curve is now a collection of n disjoint smooth analytic curves intersecting
transversally the exceptional divisor.

This exceptional divisor is a union of real projective lines which are circles intersecting
transversally. Consider the graph whose vertices are these projective lines and where
an edge connects two vertices if the projective lines intersect. The inductive process of
desingularization shows that this graph is a tree. Indeed, at each step we blow up a point
which can be either a smooth point of the exceptional divisor, or an intersection of two
projective lines. In the first case, a new leaf is grafted to a tree and in the second case, an
edge is split into two edges. The first projective line, coming from the first blow up, can
be chosen as the root of this tree.

Figure 6: Exceptional divisor made of six projective lines and the associated tree.

1For the basics about the resolution of real analytic singularities, see the corresponding chapter of [6].
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In order to make sure that at the end of the process each projective line contains at
most one point of the strict transform, it will be convenient to blow up once more each
of the n points on the exceptional divisor, if necessary, introducing new projective lines.
We can even suppose that the components of the divisor meeting the strict transform are
leaves of the desingularization tree.

Let us sum up. Given some analytic curve C defined in a neighborhood of (0, 0) in R2

by some equation F (x, y) = 0, we can construct the following objects.

• A surface S with a connected oriented boundary.

• An exceptional divisor E ⊂ S, consisting of a certain number of circles intersecting
transversally, each pair meeting at most once. The associated intersection graph is a
rooted tree. The embedding E ⊂ S is a homotopy equivalence.

• The strict transform of C: a finite disjoint union Ĉ of smooth analytic arcs β1, . . . , βn
in S intersecting transversally E. The intersection of Ĉ with a component of E is
empty if this component is not a leaf of the tree, and contains at most one point if
it is a leaf. We can assume moreover that Ĉ is transversal to the boundary of S and
that each arc βi intersects the boundary in two points.

• A blowing down analytic map Ψ : S → R2, collapsing E to the origin, which is a
diffeomorphism from S \ E onto some small punctured disc, and which collapses Ĉ

to our singular curve C.

β1

β2

Figure 7: A part of the blown-up surface S.

Each loop in S can be orienting or disorienting. Let γ be a closed immersed curve
in a surface, passing once through a point x. When the surface is blown up at x, the
self-intersection modulo 2 of the strict transform of γ (in the blown up surface) is equal
to the self-intersection of γ (in the original surface) plus 1. In the inductive construction,
when a projective line appears for the first time in the exceptional divisor, it is the core
of a Moebius band, of self-intersection 1. Later on, some of its points may be blown up.
Each blowing up permutes the orienting/disorienting status of a component in the divisor.
Figure 6, is obtained after six blowing ups: six lines, a tree with six vertices, and six circles.
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Some components of E intersect the desingularized curve Ĉ: they define some leaves in
the desingularization tree. We say that those leaves are colored. Observe that some leaves
might not be colored.

Note that if we choose some orientation for each component of E, the corresponding tree
is planar so that the children of any node are linearly ordered. Changing the orientation
reverses this order.

Look for example at the necklace in Figure 8.

Figure 8: The surface S, neighborhood of the exceptional divisor.

Six blow ups produced six bands, two are orientable and four are not. The exceptional
divisor consists of the six cores of the corresponding bands. The desingularized curve is
made up from the three red arcs, labeled a, b, c, each intersecting the boundary of S in
two points. On top, we see in black the strict transform of the y axis. Going around the
boundary of S we can read the corresponding analytic chord diagram. Just follow the
arrow and read abacbc.

1.4 Proof of the fundamental lemma

First, observe that deleting a chord in an analytic diagram transforms it into some other
analytic diagram. This corresponds to deleting a branch.

Now, start with an analytic chord diagram w and consider the desingularization tree
of some associated planar singularity. There is a projection ρ of the surface S onto the
exceptional divisor E which is a homotopy equivalence. The fiber ρ−1(x) of a point x ∈ E
is an arc connecting two points of the boundary if x is a regular point, and a cross if x is
the intersection of two circles.
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Figure 9: Projection of S onto the exceptional divisor.

Let L be a node of the tree, i.e. one of the projective lines that constitute the exceptional
divisor E. There is a unique chain of nodes going from L to the root. Cut two disjoint
arcs in S as in Figure 10, in order to disconnect L from the root in S. The four endpoints
of these arcs decompose the circle boundary of S into four intervals. Two of them (colored
in red) correspond to “what is below L” in the tree. Going around the boundary of S
and reading the chord diagram, we therefore find two disjoint intervals of letters, below L,
whose union is stable under the involution sending each occurrence of a letter to the other.
Note that these intervals could be empty if there were no colored leaves below L. However,
if there is a colored leaf below L, then at least one of the two intervals isn’t empty, though
it could happen that only one is not empty.

to the 
root

L

to the 
root

Figure 10: Pruning

In summary, every node L in the tree defines a chord diagram w(L) which is a sub-
diagram of the original diagram w and which is “connected” in the sense that its letters
form one or two intervals in w.
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Think of a rooted tree as a genealogy tree, the root being the founding member of the
family. Each node has a certain number of descendants, some of them being colored leaves.
Let L be one of the youngest members of the family having at least two colored leaves as
descendants. Among the children of L, let L1, . . . , Lk be the list of those having at least
one colored descendant (ordered in this way along L). We have k ≥ 2 since otherwise one
of the children of L would have at least two colored descendants. For the same reason,
each Li has a unique colored descendant.

L

L1L1

L2
L2

Figure 11: Pruning colored leaves

Now cut the surface S as in Figure 11, disconnecting L1 and L2 from the root and from
all other colored leaves. As before, this defines two (green) intervals on the boundary of S
whose union contains exactly four points of our initial diagram, associated to two chords.
Two chords in two intervals can be organized in the following fifteen ways.

Figure 12: Fifteen cases

In each case, there is a solitary chord, a pitchfork, or a pair of parallel or antiparallel
chords. This ends the proof of the fundamental lemma.

�

10



1.5 More non-analytic diagrams

We have observed that deleting letters in analytic chord diagrams preserves analycity. A
diagram is called basic non-analytic if it is not analytic but all of its proper sub chord
diagrams are. Clearly a chord diagram is analytic if and only if it does not contain a basic
non-analytic chord diagram.

Theorem. There is an infinite number of basic non-analytic chord diagrams.

Here is an example that will be denoted by Cn (n ≥ 5). Consider the 2n points of Z/2nZ
naturally ordered on the circle. The chord diagram pairs 2k and 2k + 3 for k = 1, . . . , n.
For n = 5, this is our previous example of non-analytic diagram with five chords. This
diagram Cn (n ≥ 5) is not analytic by the fundamental lemma. We still have to show that
if one letter is deleted, the remaining diagram is analytic. For this, we need a sufficient
criterion of analyticity.

Theorem. The following algorithm decides if a chord diagram is analytic:

1. If there is no solitary chord, no pitchfork, and no pair of parallel or antiparallel
chords, the diagram is not analytic.

2. If there is a solitary chord, delete it and continue. If there is a pitchfork, delete the
fork and keep the stick. If there is a pair of parallel or antiparallel chords, delete one
of them and continue.

3. If you end up with the one-chord diagram, then the original one was analytic.

The proof is easy. If w is analytic, w is also analytic since it corresponds to deleting
a branch. For the converse, we have to show that if w is a diagram and if w is the new
diagram obtained after one step of the algorithm with one chord less, then w is analytic if
w is analytic. So we have to add an additional branch.

1 432

Figure 13: Adding a branch

Choose a desingularization S of a singular point associated to w. A chord corresponds
to some smooth arc γ connecting two points on the boundary, transverse to the divisor
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at a point x. As in 1/, add a new analytic smooth (red) curve γ′ in S, very close and
transverse to γ as well as to the divisor. The blowing down of S produces a new singular
point with one more branch. Clearly, the new diagram has one more chord which is parallel
or antiparallel to the initial (blue) chord, depending on the orientations of the boundary.
Now choose γ′ as in 2/, with a quadratic tangency with γ at x and you get the other
parallel or antiparallel situation. To create a pitchfork with a given (blue) handle, just add
a smooth curve γ′ close to γ with a quadratic tangency with the divisor as in 3/. Finally,
if you want to add a solitary chord right after some given letter, proceed as in 4/. �

Let us use our algorithm to proove that Cn (n ≥ 5) is basic non-analytic. Deleting
one chord, we get a non cyclic chain of n− 1 chords. The first two chords u, v define a
pitchfork, so we may delete the first chord and continue until there is only one chord left.
This diagram is therefore analytic. So indeed, the set of basic non-analytic diagrams is
infinite.

u

u

v

v

Figure 14: A chain of chords

1.6 With a computer

In order to count analytic chord diagrams, we can use a computer to test small values of n.
We start by listing all possible words of length 2n in which each letter occurs twice. The
only subtlety is to take into account the cyclic character of the word under consideration.
Here is the result for n ≤ 7, in the following table:

n 2 3 4 5 6 7
Words 3 15 105 945 10395 135135
Chord diagrams 2 5 18 105 902 9749
Up to symmetry 2 5 17 79 554 5283

– Words means “linear words of length 2n in which each letter occurs twice”. There
are (2n− 1)!! of those.

– Chord diagrams, as we have defined them, are words up to cyclic permutations.
– The image of a chord diagram by a symmetry with respect to some diameter is another

diagram, which may be the same diagram or not. The item “up to symmetry” counts the
number of cyclic words up to these dihedral symmetries.

We can then count the number of analytic diagrams using the algorithm that was
described earlier. The result is:
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n 2 3 4 5 6 7
Analytic diagrams 2 5 18 102 817 7641
Up to symmetry 2 5 17 76 499 4132

It follows that for n ≤ 4, all diagrams are analytic.

Among the 105 5-chord diagrams, only the 3 examples in Figure 15 are not analytic.

C5

Figure 15: The 3 basic non-analytic chord diagrams with 5 chords.

The first diagram is already familiar, under the name C5. We denote the others by
and . It wasn’t difficult to guess the first but the other two were discovered by our

computer.

Among the 902 diagrams with 6 chords, 85 are not analytic. However, the non-analyticity
of most of them is due to the fact that one of their sub-diagrams is not analytic. Only two
6-chord diagrams are basic non-analytic.

C6

Figure 16: The 2 basic non-analytic chord diagrams with 6 chords.

Observe that the first one is the member C6 of the infinite familly we exhibited. It
corresponds to Z/12Z where every even number k (mod 12) is connected to k + 3 (mod
12). The second will be denoted by .

Among the 9749 diagrams with 7 chords, 2108 are not analytic. The only basic non-
analytic example is C7.

Later, we will show that the computer did indeed find all basic non-analytic diagrams.
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1.7 Marked chord diagrams

It will be convenient to introduce a slight strengthening of the notion of analytic chord
diagrams.

When we proved that our algorithm decides if a diagram is analytic, the key point was
the possibility of inserting a new branch. It turns out that more complicated singularities
can also be inserted, as we now explain. Consider a desingularization of some curve C as
before, so that we have a surface S, a divisor E, and a collection of smooth curves β1, . . . , βn
intersecting E transversally at p1, . . . , pn, where n is the number of real branches. Choose
one of these points, say p1. Choose now some other singular curve C1, with n1 real branches,
and assume that it does not contain the y axis. Delete β1 and replace it by a copy of C1 in
the surface S, in such a way that the y axis for C1 is mapped into the divisor E and the
singular point of C1 is mapped to p1. We can now blow down the union of this copy of C1

and β2, . . . , βn. The result is a new singular point, with n + n1 − 1 branches: one of the
branches of C has been replaced by a copy of C1.

β1

Figure 17: Inserting a singular point.

Let us examine the effect of this operation on the associated chord diagram. Looking
at the diagram associated to C1, we see that the y axis decomposes the word of length 2n1

in two components, Left and Right. In the new chord diagram with 2(n+ n1− 1) letters,
one pair of identical letters from the old diagram with 2n letters has been replaced by two
intervals, which are Left and Right. We should bear in mind that during this process,
the orders of the letters in Left and Right might have been reversed. Indeed, the two
intersections of the oriented boundary of S with β1 might be of different signs. Moreover,
the insertion of C1 in S can be done in four ways since S is not orientable and E is not
oriented.
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a1

a1

a2
a2

a3

a3

Figure 18: Right = a1a2, Left = a1a2a3a3

Note that Left or Right could be empty. In an equation F (x, y) = 0, we can replace
(x, y) by (−x, y) or (x,−y) or (x, xy). The transformation (x, y) 7→ (x, xy) preserves each
vertical line, collapses the axis x = 0 to the origin, and reverses the orientation for x < 0.
This is no surprise: it is a blow down map. The square of this transformation preserves
the orientation on each vertical line (for x 6= 0).

Of course, we can proceed in the same way with all other branches of C, using other
singular curves C2, . . . ,Cn.

All these remarks suggest the following definition.

Definition. A marked chord diagram is a collection of 2n distinct points a±11 , . . . , a±1n in
the union of two opposite sides of a square {−1, 1} × [−1, 1] (up to orientation preserving
homeomorphisms of each side).

Note the additional features if one compares with standard diagrams. Marked diagrams
have a right and a left part. Moreover, each chord ai is now labeled with a number i from
1 to n and is oriented from a−1i to a+1

i .
Let us denote by AMC the set of those marked chord diagrams which are analytic, i.e.

which arise from some analytic curve F (x, y) = 0 which does not contain the y-axis. Note
that the analyticity of a marked diagram depends neither on the orientation of the chords
nor on the labeling. The role of the labelings and orientations is simply to give the relevant
information about which marked diagram is inserted in each chord, and in which way.

a1
+1

a1
-1

a2
+1

a2
-1

a3
+1

a3
-1

Figure 19: Inserting marked chord diagrams.
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Let w be some analytic marked chord diagram with n chords. Given n analytic marked
chord diagrams w1, . . . , wn, with k1, . . . , kn chords, define the action of w on (w1, . . . , wn)
in the following way. Draw w and thicken each chord ai of w, creating rectangles. Use the
a−1i ’s and the a+1

i ’s as the left and right sides of these new rectangles. Now, insert w1, .., wn
in these rectangles respecting the labels and the orientations. Rename the chords, from 1 to
k1 + k2 + . . .+ kn using the lexicographic ordering. The result is another marked analytic
chord diagram since this operation corresponds to the previously described insertion of
analytic curves.

This defines an operad structure on AMC though we will not make use of it in this
paper.

1.8 Let us bound the number of chord diagrams

It would be great to have some precise information on the number an of analytic diagrams
with n chords. For instance, an explicit formula for the generating series

∑
ant

n would
give the exact exponential growth rate of an. Unfortunately, we were not able to compute
this function. In this subsection, we show at least that the fundamental lemma provides a
reasonable bound.

Consider a finite planar rooted binary tree. Equip each of its interior nodes (including
the root) with one of the six examples of marked diagrams with two chords represented in
Figure 20.

1

2

1

2
1

2
1

2

1

2
1

2

Figure 20: Six marked diagrams with two chords.

By recursive insertions of the diagrams of the siblings into the diagram of their parent,
this produces a marked analytic diagram and hence an analytic diagram, forgetting the
labels, the orientations, and the two sides of the square.

We claim that all analytic diagrams with n ≥ 2 chords are produced by this recipe. This
is true for n = 2 since both diagrams with 2 chords (linked of not linked) appear when one
forgets the marking in the six examples. Now, let w be some analytic diagram with n+ 1
chords, and apply the fundamental lemma. Therefore, we find · · · aa · · · , · · · ab · · · ba · · · ,
· · · ab · · · ab · · · or · · · b · · · aba · · · in the diagram. In the case of aa, call b the letter which
comes before a in the cyclic order. Our algorithm deletes a and produces an analytic
diagram w̄ with n chords, for which we can apply the induction. This means that w̄ can
be decorated with labels and orientations in such a way that it is produced by a binary
tree, as above. Our diagram w is obtained from w̄ by replacing one chord by two chords.
It is easy to check that our six examples are sufficient to realize this duplication using an
insertion in the operad. Hence w is constructed from a binary tree with n+ 1 leaves with
the same recipe.
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1
2

1

1

1

1

22

2

2
2

2

Figure 21: Recursive construction of marked diagrams.

A rooted binary tree with n leaves has n− 1 interior nodes (including the root) so that
there are 6n−1 possible labels on the interior nodes. The number of planar binary trees
with n leaves is given by the (n − 1)-th Catalan number. Therefore, we get the following
rough estimate.

Theorem. The number an of analytic chord diagrams with n chords is less than 6n−1 times
the (n− 1)-st Catalan number Cn−1.

The growth of Calalan numbers is well known: 1
n

logCn converges to log 4 as n goes to
infinity. Therefore

lim sup
1

n
log an ≤ log(24).

2 Analytic chord diagrams: interlace graphs

Let us begin by a definition.

Definition. The interlace graph of a chord diagram is the graph whose vertices are the
chords and such that an edge connects two chords if they intersect.

Not every graph comes from a chord diagram and a graph might come from several
chord diagrams. Nevertheless, the interlace graphs coming from analytic chord diagrams
turn out to be easy to analyze. The icing on the cake is that these graphs have been
introduced forty years ago in a totally different context and are very well understood.
Thanks to this new perspective, we will get the complete description of basic non-analytic
chord diagrams.

2.1 Polynomial interchanges: permutation graph

Before discussing analytic chord diagrams, we come back to the easy example of polynomial
interchanges, in order to describe our general strategy.
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Definition. The permutation graph G(π) associated to a permutation π of {1, . . . , n} has
{1, . . . , n} as vertices, and an edge connects i and j if π reverses the order of (i, j).

1
2
3
4

1 2

3 4

Figure 22: A permutation and its graph.

Note that a permutation of {1, . . . , n} defines a (marked) chord diagram with n chords,
as shown in Figure 23. The graph G(π) is nothing more than the interlace graph of this
chord diagram.

i

π(i)

Figure 23: A permutation and its graph.

Recall that for any polynomial interchange, one can find two consecutive integers with
consecutive images. The corresponding chords have therefore the property that any chord
intersecting one of them intersects the other. In terms of the graph G(π), this suggests the
following definition.

Definition. Two vertices x, y in a graph are called twins if they have the same neighbors
(different from x or y). They are called true or false twins2 depending on the existence of
an edge connecting them.

2We are not responsible for the terminology which is classical and more convenient than dizygotic (or
fraternal) twins. It is also closer to the French “faux jumeaux”.
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Figure 24: False and true twins.

Twins can be merged in a single vertex, producing a smaller graph with one vertex
less. The graph G(π) coming from a polynomial interchange π contains at least two twins,
corresponding to two consecutive integers i, i+1 such that π(i+1) = π(i)±1. Merging the
twins in the graph amounts to merging the two elements i, i+1. We know that polynomial
interchanges are characterized by the fact the iteration of this merging procedure eventually
leads to the trivial permutation with n = 1.

Definition. A finite graph is called a cograph if it can be reduced to a trivial 1-vertex
graph by merging twins successively.

The terminology “cograph” comes from the fact that the complement of a cograph is
also a cograph. A graph G and its complement G have the same vertices and two vertices
are adjacent in G if and only if they are not adjacent in G.

Figure 25: A cograph.

Proposition. A permutation is a polynomial interchange if and only if its permutation
graph is a cograph.

We just explained why the permutation graph of a polynomial interchange is a cograph.
To prove the converse, it suffices to show that if G(π) is a cograph, there are two consecutive
integers with consecutive images. The proof is by induction on n. If i < j are false (resp.
true) twins, the image by π of the interval [[i, i+1, . . . , j]] is [[π(i), π(i+1), . . . , π(j)]] (resp.
[[π(j), π(j + 1), . . . , π(i)]]). If j ≥ i+ 2, the image π([[i, . . . , j − 1]]) is also an interval and
we apply the induction hypothesis to the restriction of π to [[i, . . . , j− 1]] so that one finds
two consecutive integers with consecutive images. �

Cographs have been introduced in the 1970’s under different names (D?-graphs, hered-
itary Dacey graphs, and 2-parity graphs; see [2] for references). They are not very difficult
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to describe. We list some of their properties whose (elementary) proofs are left to the
reader.

In what follows, all graphs are finite, with no loops and no multiple edges. A connected
graph defines a metric space on its set of vertices. The distance between two vertices is,
by definition, the length of the shortest path connecting them.

A subgraph H of a graph G is induced if any edge of G connecting two vertices of H is
also an edge of H.

Theorem. The following properties of a finite graph G are equivalent.

1. G is a cograph.

2. G is the permutation graph of some polynomial interchange.

3. Any connected induced subgraph of G has a diameter at most 2.

4. There is no induced subgraph isomorphic to (denoted P4).

Note that the permutation graphs associated to the forbidden Kontsevich permutations
(2, 4, 1, 3) and (3, 1, 4, 2) are both isomorphic to P4. Conversely a permutation whose graph
is isomorphic to P4 is one of these two permuations. The previous theorem can therefore
be translated as the following.

Theorem. Let n ≥ 2 be some integer. A permutation π of {1, 2, . . . , n} is a polyno-
mial interchange if and only if it does not “contain” one of the two forbidden permu-
tations, i.e. if there do not exist four indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such that
π(i2) < π(i4) < π(i1) < π(i3) or π(i3) < π(i1) < π(i4) < π(i2).

2.2 Collapsible graphs

Starting from a tree, one can strip off its leaves one by one until it has been stripped
completely naked. Let us say that a vertex in a graph is pendant if it is adjacent to a
unique vertex. Any tree can be constructed by successive additions of pendant vertices,
starting with the tree with only one vertex.

Figure 26: Pendant vertex.
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Definition. A finite graph is collapsible if it can be reduced to a 1-vertex graph by applying
two kinds of elementary operations: deleting a pendant vertex and merging twins.

One can express the same thing in the opposite way. Start with the trivial graph with
one vertex and apply two kinds of operations: adding a pendant vertex or creating a pair
of twins. The second operation simply consists in duplicating a vertex and connecting the
newly born twin to the rest of the graph as the original vertex was. Then, decide if you
want true or false twins.

The key point is the following.

Proposition. A chord diagram is analytic if and only if its interlace graph is collapsible.

This will follow from the algorithmic description of analytic diagrams given in the
previous section.

Before the proof, let us make an elementary remark, as an appetizer.
Let w be a diagram and A be a subset of its 2n letters on the circle. We will say that

A is stable under w if any chord with one end in A has its other end in A. Said differently
A is a sub-chord diagram wA of w.

Suppose that there is an interval A which is stable under w, and let B be its comple-
ment. Clearly the interlace graph G(w) of w is the disjoint union of the graphs G(wA) and
G(wB) of wA and wB. It follows that G(w) is collapsible if and only if G(wA) and G(wB)
are collapsible. Our algorithm shows that if wA, wB are analytic so is w. Conversely, if w
is analytic, so are their sub-diagrams wA and wB.

A B

Figure 27: G(w) = G(wA) tG(wB).

Let us prove now the proposition.

Start with an analytic diagram w. If two chords of w are parallel or antiparallel, the
associated vertices in the interlace graph are twins and our algorithm merges them. A
pitchfork gives a pendant vertex in the graph and the algorithm deletes the short chord
and keeps the handle. A solitary chord defines an isolated vertex, which is removed by
the algorithm. It follows that the interlace graph associated to an analytic diagram is
collapsible.
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For the converse, we show that every diagram w whose interlace graph G(w) is collapsi-
ble contains a solitary chord, or a pitchfork, or a pair of parallel or antiparallel chords.

A solitary chord in a diagram corresponds to two consecutive identical letters · · · aa · · ·
in the cyclic word. A pitchfork corresponds to a subword of the form · · · aba · · · . A pair of
parallel (resp. antiparallel) chords corresponds to · · · ab · · · ba · · · (resp. · · · ab · · · ab · · · ).

Our proof will be by contradiction. We use the symbol E to mean “contradiction”.
Consider a possible counterexample w to the previous assertion with a minimal number
of chords. So G(w) is collapsible and w contains no solitary chord, no pair of parallel or
antiparallel chords, and no pitchfork.

Since G(w) is collapsible, there is a vertex α which is either isolated, or pendant, or is
part of a pair of twins. Let w be the diagram obtained by deleting α from w. Of course
G(w) is collapsible so that, by minimality, w contains a subword · · · aa · · · or · · · aba · · · ,
or · · · ab · · · ba · · · , or · · · ab · · · ab · · · . The problem is that these are subwords of w and
not of w, which also contains two copies of the letter α, which could sneak into the above
subwords. Note that by minimality any interval which is stable under w is either empty
or everything.

A priori:
– 0, 1 or 2 letters α could sneak in the subword, i.e. in non dotted intervals
– the subword of w could correspond to a solitary chord, or a pitchfork, or to a pair of

parallel or antiparallel chords,
– α could be isolated, pendant or twin, true or false, in G(w).
That makes 3 × 4 × 4 cases to examine! Fortunately, many cases can be studied

simultaneously.

1/ If no letter α sneaks into the above subwords, there is no problem: our solitary
chord or pitchfork, or pair of parallel or antiparallel chords in w have the same property
for w E.

2/ If α is isolated in G(w), this means that no chord intersects α. Therefore α decom-
poses the circle in two stable intervals, of which one has to be empty E.

3/ If two letters α sneak in, they cannot occur as consecutive letters since that would
force the chord α to be solitary in w E. Still in this case, we have to look at

· · · aαbαa · · · , or · · · aαb · · · bαa · · · , or · · · aαb · · · aαb · · ·

This produces respectively a pitchfork (α, b), a pair of parallel chords (α, b) or antiparallel
chords (α, b) in w E.
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4/ Inserting one α in a solitary chord yields · · · aαa · · · which produces a pitchfork in
w with handle α E.

So far, we did not use the fact that α is pendant or twin. This will be used in the
remaining cases, when a single α enters in a pitchfork or a pair of parallel or antiparallel
chords of w.

If α is pendant, let β be the only chord in w intersecting α. If α has twin siblings, we
denote β one of them. The two chords α, β determine four intervals in the circle, excluding
α, β, that will be called sectors. If α is pendant, the union of two sectors which are on the
same side of α is stable. If α, β are twins, the union of opposite sectors is stable.

α

α

β β

α

αβ

β

Figure 28: Linked or unlinked.

5/ Suppose now that a single letter α enters · · · aba · · · , or · · · ab · · · ba · · · , or · · · ab · · · ab · · ·
and that one of the two letters a, b is equal to β. Then, the two letters α and β are con-
secutive in w. This implies that one of the sectors is empty.

5-1 In the pendant case, this implies that the other sector, on the same side of α, is
a stable interval and therefore also empty. So, α, β is a pitchfork in w with handle β E.

5-2 In the twin case, this implies that the opposite sector is a stable interval, and
therefore empty. So α, β is a pair of parallel or antiparallel chords in w E.

6/ Finally, suppose that a single letter α enters · · · aba · · · , or · · · ab · · · ba · · · , or · · · ab · · · ab · · ·
and that none of the two letters a, b is equal to β.

6-1 Assume that (a, b) are parallel or antiparallel chords in w. Inserting one α in ab
yields · · · aαb · · · ba · · · or · · · aαb · · · ab · · · . Since the letters ba (and ab) are consecutive,
these two occurrences are on the same side of the chord α. And since the letters aαb are
consecutive in w, it follows that these other two occurrences of a and b are on different
sides of α. Hence the chord α intersects only one of the chords a, b.

6-1-1 If α is pendant, this forces a or b to be equal to β E.
6-1-2 If α, β are twins, this is not possible E.

6-2 Assume that (a, b) is a pitchfork in w. Inserting a letter α in · · · aba · · · yields
· · · aαba or · · · abαa so that the chord α should intersect the chord a.

6-2-1 If α is pendant, this forces a = β E.
6-2-2 If (α, β) are twins, then β (which is not a) also intersects a. Since the letters

aαba are consecutive, we must have β = b E.
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This finishes the proof. Ouf ! �

Now, we have to understand the nature of collapsible graphs.

2.3 Distance hereditary and treelike graphs

Collapsible graphs have been defined by several authors forty years ago, under different
names, with very different motivations. We will see that these graphs are very close to
being trees.

Howorka [11] defined distance hereditary graphs in 1977.

Definition. A finite graph G is distance hereditary if for every connected induced subgraph
H ⊂ G, the distance between two vertices of H in H is equal to the distance between the
same vertices in G.

Figure 29: A cycle of length ≥ 5 is not distance hereditary.

For instance, a tree is distance hereditary and a cycle of length at least 5 is not. It
suffices to choose H as the induced subgraph defined by a path inside the cycle whose
length is greater than one half of the length of the cycle.

Let us introduce metric graphs along with a property characterizing the subspaces of
metric trees. A weakened version of this property will give an alternative description of
our distance hereditary graphs. Consider a finite graph and choose some length for each
edge, which could be any positive real number. Define the length of a path as the sum of
the lengths of its edges and the distance between two vertices as the smallest length of a
path connecting them. One speaks of a metric graph.

We are looking for a characterization of metric spaces (usually called metric trees)
arising in this way from trees. Here is the answer. Let (V, d) be a finite metric space.
Choose four points x1, x2, x3, x4 in V and compute the sums of the lengths of the three
pairs of diagonals:

d(x1, x2) + d(x3, x4) ; d(x1, x3) + d(x2, x4) ; d(x1, x4) + d(x2, x3).

Let s (resp. m, l) be the smallest (resp. medium, largest) of these three numbers:
s ≤ m ≤ l. It turns out that a finite metric space is isometric to a subset of a metric
tree if and only if m = l for every quadruple of points. This is not difficult to prove but
the lazy reader might find the proof in this short paper [3].

24



x1

x2

x3

x4

Figure 30: A quadrangle in a tree

We should be careful. A graph, where all edges have length 1, can be isometric to a
subset of a metric tree without being itself a tree. Look at the example in Figure 31. In
graph theory, those graphs are called block graphs.

Figure 31: A block graph.

In order to construct them, start with a tree, delete some of its vertices and replace
them by cliques, i.e. finite graphs where all pairs of vertices are adjacent, as in the Figure.
This is indeed a characterization of block graphs (see [10]).

A metric space (E, d) is geodesic if for every pair of points (x, y) there exists an isometric
embedding i : [0, d(x, y)]→ E such that i(0)) = x and i(d(x, y)) = y.

In the 1980’s, Gromov developed a geometric theory for hyperbolic spaces which had a
very strong influence on combinatorial and geometric group theory. The definition is the
following. A metric space (E, d) is called hyperbolic if there exists some δ ≥ 0 such that for
every quadruple of points as above, m and l are “almost equal”, i.e. l−m ≤ δ. Note that
any finite metric space is trivially hyperbolic (for δ sufficiently big) so that this concept
is only relevant for geometry in the large. There are many equivalent formulations of this
property, the most popular (for geodesic metric spaces) being that all geodesic triangles are
slim. Consider three points x, y, z and choose three geodesics [x, y], [x, z], [y, z] connecting
them. Every point in [x, y] should be at some uniformly bounded distance from the union
[x, z] ∪ [y, z], independently of the choice of x, y, z (Figure 32).
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x

z

y

Figure 32: A slim triangle

This concept is remarkably robust. For instance, the universal cover of a negatively
curved compact Riemannian manifold is hyperbolic. These metric spaces are well approx-
imated by trees, in a quantitative way (see for instance [7]).

In 1986, Bandelt and Mulder published a paper [1] proposing purely metrical charac-
terizations of distance hereditary graphs, close to Gromov’s hyperbolicity conditions.

Definition. A finite graph G is treelike if for every 4-tuple of vertices x1, x2, x3, x4 two of
the following three numbers are equal:

d(x1, x2) + d(x3, x4); d(x1, x3) + d(x2, x4); d(x1, x4) + d(x2, x3).

For instance, one can show easily that a treelike graph is hyperbolic in the sense of
Gromov with δ=2.

Figure 33: A cycle of length 4 is treelike but not a tree.

All these definitions turn out to be equivalent, and correspond to

Theorem. Let G be a finite graph. The following properties are equivalent.

1. G is the interlace graph of some analytic chord diagram,

2. G is collapsible,

3. G is distance hereditary,

4. G is treelike,

5. G does not contain a cycle of length at least five, or a house, a gem, or a domino
(see Figure 34), as an induced subgraph.
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Figure 34: The house, the gem and the domino

All the equivalences in the previous theorem (except of course the first item) are proved
in the above mentioned papers. However, we will soon propose some elementary proofs.

It is now time to harvest the fruits of our labor and to get a very simple description of
analytic chord diagrams.

It should not be surprising that the interlace graphs of , , are the house, the gem,
and the domino. In fact, one can easily show that , , are the only chord diagrams
whose interlace graphs are the house, the domino and the gem.

In the same way, we have already described the non-analytic chord diagram Cn defined
by Z/2nZ (n ≥ 5) where there is a chord connecting 2k and 2k + 3 (for k = 1, . . . , n). Its
interlace graph is a cycle of length n. It also clear that Cn is the only chord diagram whose
interlace graph is a cycle of length n.

Finally, note that a sub-chord diagram defines an induced subgraph in the interlace
graph. Therefore, we get a very satisfactory description of analytic chord diagrams, which
is the main result of this paper.

Theorem. A chord diagram is analytic if and only if it does not contain , , or Cn
(n ≥ 5) as a sub-chord diagram.

Note the complete analogy with our characterization of polynomial interchanges as
those permutations which do not contain Kontsevich’s examples (2, 4, 1, 3) and (3, 1, 4, 2).

2.4 Some proofs

We present now the proofs of the equivalences of the definitions in the previous subsection.
They are mostly elementary. In this specific case, it was probably more challenging to find
the significant definitions than to prove their equivalence.
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No ≥5 as an induced subgraph =⇒ Distance hereditary.

Let H be an induced subgraph of a graph G. Connect two vertices p, q of H at distance
n in H by a path c = (x0, x1, . . . , xn) (with p = x0 and q = xn) in H. Two vertices xi, xj
are adjacent if and only if i, j are consecutive since otherwise there would be a shortcut.
In other words, the path c is induced in G. It follows that in order to show that a graph
is distance hereditary, we should prove that the distance between the endpoints of any
induced path in G is equal to the length of the path.

Suppose that no ≥5 is induced in G. Choose an induced path c1 = (x0, x1, . . . , xn)
and let us show, by induction on n, that the distance in G between x0 and xn is exactly n.

Connect x0 to xn by a shortest path c2 = (y0, y1, . . . , yl) in G (with y0 = x0 and
yl = xn). Of course, c2 is also induced and d(y0, yi) = j for 0 ≤ i ≤ l. By the induction
hypothesis, d(x0, xi) = i for 0 ≤ i ≤ n− 1 so l is equal to n− 2, n− 1 or n. We must show
that the first two cases are not possible. Suppose that l = n − 2 or n − 1. By induction
hypothesis, we can assume that the two paths c1, c2 only intersect at their endpoints: any
other intersection point could be used as the starting point of shorter paths c′1 and c′2.

0

n-3

n-2

n-1

1

xn-1

xn-2

xn-3

x1 y1

yn-3

xn=yn-2

x0=y0

c1 c2

0

n-3

n-2

n-1

1

xn-1

xn-2

xn-3

x1 y1

yn-3

yn-2

xn=yn-1

x0=y0

Figure 35: Checking heredity...

Draw a picture in the plane in such a way that the height of a vertex of c1 or c2 is the
distance from x0. The cases l = n− 2 and l = n− 1 are pictured in Figure 35. Vertices of
c1 are red and vertices of c2 are blue. The union of c1 and c2 defines a cycle c in G. The
length of c is at least 5. The cycle c cannot be induced since there is no induced cycle of
length ≥ 5. Therefore there must exist diagonals connecting vertices of c1 with vertices of
c2.

By the triangle inequality, the height difference of the two endpoints of a diagonal can
only be −1, 0, 1. Moreover, diagonals connect points of different colors. Let us order the
diagonals (xi, yj) from top to bottom, i.e. (xi, yj) is before (xi′ , yj′) if j > j′ or j = j′ and
i > i′.
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δ1δ1

δ2 δ1

Figure 36: No ≥5 =⇒ distance hereditary

Now, try to construct the ladder, one diagonal at a time. The rule of the game is
the following. You have to draw an ordered sequence of diagonals δ1, δ2, . . . respecting the
conditions above and without creating any induced ≥5 . Note that the diagonal δk
together with the part of c which is above it defines a cycle. Any chord in this cycle has
to be one of the previously chosen chords δ1, . . . , δk−1.

In the case l = n−1, there are only two possibilities for the first diagonal δ1. It could be
(xn−1, yn−2) or (xn−2, yn−2). In the case l = n−2 there is only one possibility for δ1. Then,
try to select the second diagonal δ2, avoiding ≥5 . Only one of the three choices of
δ1 allows you to do so. Finally, try to draw the third diagonal, in the only case where
you could draw δ1, δ2. It is not possible to continue without creating one of the forbidden
graphs. �

Distance hereditary =⇒ Collapsible.

We only need to show that G has a pendant vertex or a pair of twins. Indeed deleting
the former or merging the latters preserves the distance hereditary property so that we can
repeatedly collapse the graph to a single vertex.

x

y

y'z

Sk

Sk-1

Figure 37: hereditary =⇒ Collapsible

Choose some vertex x in a connected distance hereditary graph G and look at the
largest k such that the sphere Sk in G of radius k and centered on x is non-empty. Let
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C be a connected component of Sk. If C contains only one element, then it is a pendant
vertex in G.

Otherwise, choose two vertices y, y′ in C which are adjacent in C. Choose a vertex z
adjacent to y and at distance k − 1 from x. Choose a chain c of length k − 1 from x to z
and call c′ the chain of length k+1 obtained by adding the edge between z and y and from
y to y′. Since the distance between x and y′ is exactly k, this chain cannot be induced and
y′ has to be adjacent to z. This implies that two points in C are simultaneously adjacent
or not to any point z at distance k−1 from x. It follows that C cannot contain an induced
path P4 of length 3, since together with z, it would produce a gem in G, which is not
distance hereditary. Hence C is a cograph and in particular contains a pair of twins. By
the above observation, two twins in C are twins in G. �

Collapsible =⇒ Treelike.

Easy by induction. Take four points in a graph, delete a pendant vertex or merge two
twins. One of the four points might be the vertex which has been removed. If this is the
case replace it by the other end of the removed edge. Look at the corresponding points in
the stripped graph (taking into account for instance the fact that two of our four points
could be the two twins which have been merged). Apply the induction hypothesis. �

Treelike =⇒ No induced ≥5 .

Obvious since one checks easily that none of these examples of graphs are treelike. �

2.5 Appendix : completely decomposable graphs

This subsection is some kind of bonus but it can shed some light on the structure of
collapsible graphs.

Graphs that can be stripped to a point by deleting only pendant vertices are trees.
Graphs that can be stripped to a point by merging only pairs of twins are cographs.
Collapsible graphs should not be far from being trees. This is indeed true as explained
now.

A1

A2

B1 B2

x1 x2

G1 G2

x1 x2

G

Figure 38: Splitting a graph

Let G be a finite connected graph. Suppose that its vertices have been partitioned
in two parts A1 and A2. Let B1 ⊂ A1 (resp. B2 ⊂ A2) the set of vertices of A1 (resp.
A2) which are adjacent to some vertex in A2 (resp. A1). Suppose that every element of
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B1 is adjacent to every element of B2 and that those are the only edges between A1 and
A2. This condition is trivially satisfied if A1 or A2 contains less than one element, so we
assume that A1 and A2 contain at least two elements each. In this situation, the graph
G is called decomposable and the partition A1, A2 is a split. In order to keep track of this
decomposition, let us create two graphs G1, G2 in the following way. The set of vertices of
G1 (resp. G2) is A1 plus one extra vertex x1 (resp. x2) called the control vertex. As for the
edges of G1 (resp. G2), choose the edges of G plus extra edges connecting x1 (resp. x2) to
all elements of B1 (resp. B2).

The graph G can be reconstructed from (G1, x1) and (G2, x2) by an elementary join
construction. Notice that the control points x1, x2 are not vertices of G: they are only
useful to define the edges connecting the two parts.

Note that when A2 contains two elements, as in Figure 39, the graph G has a pendant
vertex or a pair of twins.

Figure 39: A2 contains 2 elements.

Hammer and Maffray [9] introduced in 1987 completely decomposable graphs, analog to
trees. A finite connected graph is a tree if and only if every induced connected subgraph
contains a cut edge, i.e. an edge that disconnects it.

Definition. A finite graph is completely decomposable if every induced connected subgraph
with at least four vertices is decomposable.

It is not hard to prove that completely decomposable (connected) graphs are precisely
the collapsible (connected) graphs. Indeed in the join construction, if G1 and G2 are
collapsible, the same is true for G, so that completely decomposable graphs are collapsible,
by induction.

Conversely, we have seen that a pendant vertex or a pair of twins gives rise to a decompo-
sition. Therefore collapsible graphs are decomposable and even completely decomposable,
since an induced subgraph of a collapsible graph is collapsible (with the distance hereditary
definition).

In order to give a precise description of completely decomposable graphs, let us state
first the important split decomposition theorem for general connected finite graphs.

If a finite connected graph G is decomposable, consider it as the join of G1 and G2 as
before. Then, try to decompose G1 and G2, and so on, until the resulting graphs become
non-decomposable. The final result of this decomposition into “elementary pieces” can be
conveniently described by a graph-labeled tree, as explained below. It consists of a tree T
where each internal node x is equipped with a connected finite graph Gx which is either
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a clique, a star or indecomposable (no splits). Moreover some bijection has been chosen
between the vertices of Gx and the edges getting out from the node x in T . Assume that
the valency of each node is at least 3. Given such a structure, we construct a graph G(T )
which is a “composition of the Gx’s controlled by T”. The definition is the following.

The vertices of G(T ) are the leaves of T . In order to understand the edges of G(T ), let
us just draw a picture, inspired by the paper of Gioan and Paul [8] who introduced this
concept of graph-labeled tree. We see a tree with 16 leaves and 6 internal nodes, in pink.
The associated graph, with 16 vertices, is drawn on the right.
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Figure 40: Graph-labeled tree and its composition

Choose two leaves of T and connect them by the shortest path in the tree. For each
node x which is visited by this path, there is an entrance edge and an exit edge. In turn,
these two edges define two vertices of Gx. Two vertices of G(T ), that is two leaves of T , are
adjacent in G(T ) if, for every node x visited by this path, the two corresponding vertices
of Gx are adjacent in Gx. The vertices of the Gx’s generalize the two control vertices, as
in the simple case where T contains only one edge.

The main result, proved by Cunningham and Edmonds [4] in 1980 (and reformulated
by Giona and Paul), is that any finite connected graph is obtained by such a construction in
which the Gx’s are elementary, in an essentially unique way. The existence of this splitting
is easy. The hard part is the “essential uniqueness” that we don’t define since we will not
need it.

Let us come back to completely decomposable graphs. In this special case the Gx’s must
have at most 3 vertices. Indeed, they are indecomposable and induced subgraphs of G, so
that the claim follows from the definition of complete decomposability. This gives a fairly
precise geometric description of completely decomposable graphs. Take a tree such that
every node has valency 3. For each node, choose a connected graph with 3 vertices (not
that many choices!), and construct a graph-labeled tree as in Figure 41. All completely
decomposable graphs are produced in this way.

This is absolutely no surprise. Indeed look at the third picture, showing three small
graphs with three leaves. When you hook one of them to some (blue) leaf of a graph-labeled
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tree T , you get another graph-labeled tree T ′ with one more leaf. If you examine the effect
on the associated graph G(T ), you see that you have split a vertex in a pair of twins (true
or false) or you have created a pendant vertex, depending on the cases. We are back to
the original definition of collapsible graphs as graphs that can be constructed from a point
by successive introductions of twins or of pendant vertices.
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Figure 41: A collapsible graph
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