Topologie des courbes algébriques réelles Combinatoire des configurations locales et globales

Christopher-Lloyd Simon

Départment de mathématiques ENS Lyon

Mardi 27 Novembre 2018

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants Énumération des buissons Dénombrement des diagrammes analytiques

Topologie et combinatoire des courbes algébriques singulières Topologie globale : quelles obstructions ? Énumération des configurations sur la sphère Estimations du nombre de courbes algébriques projectives réelles

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants Énumération des buissons Dénombrement des diagrammes analytiques

Topologie et combinatoire des courbes algébriques singulières

Singularités de courbes algébriques du plan réel

- ▶ Une courbe algébrique du plan réel : F(x, y) = 0, $F \in \mathbb{R}[x, y]$.
- Point singulier $\partial_x F(0,0) = \partial_y F(0,0) = 0$.
- En rouge : $x^5 + x^4 + 2yx^2 + y^2 = 0$.

De la courbe au diagramme de cordes

- Branches paramétrées par séries de Puiseux : $\sum_{n \ge n_0} a_n x^{\frac{n}{m}}$
- À homéo près : des segments sortant de la singularité
- Segments viennent par paires : diagramme de cordes

Graphe d'entrelacement du diagramme de cordes

 $v_0v_1v_2v_3v_4v_5v_6v_5v_7v_0v_2v_1v_3v_4v_7$

Définition

Si un diagramme de cordes possède comme motif une corde isolée, une fourche, des vrais ou faux jumeaux :

on appelle simplification le diagramme obtenu en enlevant la corde indéxée par la lettre « a » d'un tel motif.

À l'aide d'éclatements, Étienne Ghys a trouvé une description récursive des diagrammes analytiques :

Théorème (2017)

- Le mot vide est un diagramme analytique.
- Si un diagramme non vide ne contient pas de corde isolée, de fourche, ou une paire de jumeaux; alors il n'est pas analytique.
- Si par contre il contient un tel motif, alors il est analytique si et seulement si une simplification du diagramme l'est aussi.

Théorème (2017 : graphes d'entrelacement de singularités) Un graphe provient d'une singularité ssi il est :

- Repliable : description récursive analogue aux diagrammes analytiques (non triviale !).
- Distance-héréditaire : condition métrique sur les sous-graphes.
- Buisson : condition métrique sur 4 points à la Gromov.
- Ne contient pas de maison, gemme, domino ou (n > 4)-cycle comme graphe induit.

Théorème (2017 : graphes d'entrelacement de singularités) Un graphe provient d'une singularité ssi il est :

- Repliable : description récursive analogue aux diagrammes analytiques (non triviale !).
- Distance-héréditaire : condition métrique sur les sous-graphes.
- Buisson : condition métrique sur 4 points à la Gromov.
- Ne contient pas de maison, gemme, domino ou (n > 4)-cycle comme graphe induit.

Théorème (2017 : graphes d'entrelacement de singularités) Un graphe provient d'une singularité ssi il est :

- Repliable : description récursive analogue aux diagrammes analytiques (non triviale !).
- Distance-héréditaire : condition métrique sur les sous-graphes.
- Buisson : condition métrique sur 4 points à la Gromov.
- Ne contient pas de maison, gemme, domino ou (n > 4)-cycle comme graphe induit.

Corollaire (2017)

Un diagramme de cordes est analytique ssi il ne contient pas l'un des motifs suivants.

Dans un graphe connexe, on définit une décomposition (A_1, A_2) :

On demande $|A_k| > 1$.

On la factorise avec des sommets de contrôle :

On a un arbre-de-graphes. Nœuds *internes* induits par $A_k \cup \{x_k\}$. On continue jusqu'à ce que les nœuds soient *premiers* ou *dégénérés*.

Cela peut ressembler à :

lci tous les sommets sont dégénérés : star-clique.

L'arbre-de-graphes est *réduit* si pas de clique-join ou star-join :

Théorème (Cunningham, Gioan-Paul)

Tout graphe admet une unique décomposition en arbre-de-graphes réduits.

Réciproquement on récupère le graphe d'accessibilité des feuilles :

Buisson : arbre-de-graphes-dégénérés réduit

Corollaire (de la décomposition de Cunningham)

Un buisson provient d'un unique arbre-de-graphes-dégénérés réduit. Désormais on pense aux buissons comme des SK-arbres.

Buisson : arbre-de-graphes-dégénérés réduit

Corollaire (de la décomposition de Cunningham)

Un buisson provient d'un unique arbre-de-graphes-dégénérés réduit. Désormais on pense aux buissons comme des SK-arbres.

Grammaire génératrice inambigüe (structure d'opérade) On enracine les buissons en une feuille, on étiquette les feuilles, on compose en branchant racines des enfants sur feuilles des parents.

Buissons connexes étiquetés

Grammaire et théorème des fonctions implicites effectif

$$B(z) = \frac{1}{2} \left(B_{K}(z) + B_{S^{*}}(z) + B_{S'}(z) - z \right)$$

$$B_{K}(z) = z + \sum_{n>1} \frac{B_{S^{*}}(z)^{n}}{n!} + \sum_{n>1} B_{S'}(z) \frac{B_{S^{*}}(z)^{n-1}}{(n-1)!}$$

$$B_{S^{*}}(z) = z + \sum_{n>1} \frac{B_{K}(z)^{n}}{n!} + \sum_{n>1} B_{S'}(z) \frac{B_{S^{*}}(z)^{n-1}}{(n-1)!}$$

$$B_{S'}(z) = z + \sum_{n>1} \frac{B_{K}(z)^{n}}{n!} + \sum_{n>1} \frac{B_{S^{*}}(z)^{n}}{n!}$$

Buissons connexes étiquetés

Grammaire et théorème des fonctions implicites effectif

Proposition (2018 : Série des buissons connexes étiquetés) Le nombre B_n de buissons connexes enracinés étiquetés de taille n équivaut à

 $\beta = 2\sqrt{3} - 1 + 2\log \frac{1+\sqrt{3}}{2}$ vérifie $6 < \beta^{-1} < 7$ et $b = \sqrt{\frac{\beta}{\sqrt{3}}}$. Premiers termes de la suite $(B_n)_{n \in \mathbb{N}}$:

 $\begin{matrix} 0,\ 1,\ 4,\ 38,\ 596,\ 13072,\ 368488,\ 12693536,\\ 516718112,\ 24268858144,\ 1291777104256,\\ 76845808729472,\ 5052555752407424 \end{matrix}$

Opérade sur les diagrammes analytiques connexes marqués

- Relever la décomposition en SK-arbres des buissons (enracinés non étiquetés) aux diagrammes connexes enracinés.
- À un buisson correspond plusieurs diagrammes de cordes qui diffèrent par des mutations :

- ► Un diagramme enraciné possède une gauche et une droite.
- Un arbre enraciné induit un ordre partiel sur ses nœuds.

Opérade sur les diagrammes analytiques connexes marqués On décore les nœuds internes d'un arbre par les diagrammes :

Enraciné, non étiqueté. Retenir gauche et droite lors de l'insertion.

Grammaire inambigüe

Lemme (2018)

Chaque diagramme analytique enraciné connexe est ainsi engendré, et ce de manière unique.

Équations pour la grammaire des diagrammes connexes

$$C(z) = \frac{1}{2} (C_T + C_{D^*} + C_{D'})$$

$$C_T(z) = z + \sum_{n>1} C_{D^*}^n + \sum_{k+l>0} C_{D'} C_{D^*}^{k+l}$$

$$C_{D^*}(z) = z + \sum_{n>1} C_T^n + \sum_{k+l>0} C_{D'} C_{D^*}^{k+l}$$

$$C_{D'}(z) = z + \sum_{n>1} C_{D^*}^n + \sum_{n>1} C_T^n$$

Diagrammes analytiques linéaires connexes Algébricité de la série génératrice, Asymptotique, Formule close

Proposition (2018)

Algébricité de la série : $2C^3 + (z+2)C^2 + (2z-1)C + z = 0$. Asymptotique : $C_n \sim c_0 n^{-\frac{3}{2}} \gamma^{-n}$ avec $13 < \gamma^{-1} < 14$:

$$\gamma = \frac{1}{12} \left(49 - \frac{433}{\sqrt[3]{24407 - 1272\sqrt{318}}} - \sqrt[3]{24407 - 1272\sqrt{318}} \right)$$

Formule par inversion de Lagrange :

$$C_{n} = \frac{1}{n} \sum_{k=0}^{n-1} \binom{n-1+k}{n-1} \binom{2n+k}{n-1-k} 2^{k}$$

Premiers termes de la suite $(C_n)_{n \in \mathbb{N}}$: 1,4,27,226,2116,21218,222851,2420134,26954622,306203536.

Diagrammes analytiques linéaires Algébricité de la série génératrice, Asymptotique

Lemme (2018) Les séries génératrices A et C sont liées par l'équation $A = 1 + zA^2 + zA^2 C(zA^2).$

Idée de la preuve

Diagrammes analytiques linéaires Algébricité de la série génératrice, Asymptotique

Théorème (2018 : diagrammes analytiques linéaires) La série génératrice des diagrammes analytiques est algébrique :

 $(z^{3} + z^{2})A^{6} - z^{2}A^{5} - 4zA^{4} + (8z + 2)A^{3} - (4z + 6)A^{2} + 6A - 2 = 0$

Asymptotique : $A_n \sim a_0 n^{-\frac{3}{2}} \alpha^{-n}$ où $15 < \alpha^{-1} < 16$. Premiers termes de la suite $(A_n)_{n \in \mathbb{N}}$ (vérifiés algorithmiquement) :

1, 1, 3, 15, 105, 923, 9417, 105815, 1267681, 15875631, 205301361

Diagrammes de cordes analytiques Asymptotique

Corollaire (2018 : diagrammes analytiques non enracinés)

$$ilde{\mathcal{A}}_n \sim rac{\mathcal{A}_n}{n} \sim \mathsf{a}_0 \ n^{-rac{5}{2}} \ lpha^{-n}$$

Ingrédients de la preuve.

- Formule des classes
- Définition d'un diagramme quotient
- Possible si pas d'inversions de cordes
- Analyse et comparaison

Sommaire

Topologie et combinatoire des singularités

Topologie et combinatoire des courbes algébriques singulières Topologie globale : quelles obstructions ? Énumération des configurations sur la sphère Estimations du nombre de courbes algébriques projectives réelles

Question des configurations globales

Globalement, une courbe algébrique est formée de parties lisses reliant des singularités. Quelles configurations sont possibles?

Courbe combinatoire : carte connexe, sommets \leftarrow diagrammes. Formulation avec trois permutations sur ensemble des rayons.

Théorème (2018 : Courbes combinatoires algébriques) Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Théorème (2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

 On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.

Théorème (2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.

Théorème (2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.
- Approximation C¹ par une courbe algébrique lisse (Whitney, Tchebychev, Kollár ou Nash-Tognoli et Akbulut-King).

Théorème (2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.
- Approximation C¹ par une courbe algébrique lisse (Whitney, Tchebychev, Kollár ou Nash-Tognoli et Akbulut-King).
- On implose la courbe approximante.

Énumération des courbes combinatoires algébriques sur S²

Soit une surface $P_k = \mathbb{S}^2 \setminus \bigsqcup_{l=1}^s \mathbb{D}^2$ où $2k = (2k_1, \ldots, 2k_s) \in (\mathbb{N}^*)^s$ compte les points décorés sur chaque composante de bord J_l .

Un découpage de $P_{(6,4,4,4,6,4,4,4)}$.

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2

Tutte dénombre en 1962 les découpages de P_k ayant un sommet distingué par composante de bord :

$$\frac{(c-1)!}{(c-s-2)!}\prod_{\nu=1}^{s}k_{\nu}\binom{2k_{\nu}}{k_{\nu}}.$$

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2 En combinant cela avec l'énumération diagrammes analytiques : Proposition (2018 : Courbes combinatoires algébriques sur \mathbb{S}^2) Le nombre de courbes combinatoires algébriques de la sphère ayant s sommets indexés et enracinés de tailles k_1, \ldots, k_v vaut :

$$\frac{(c-1)!}{(c-s-2)!} \prod_{\nu=1}^{s} k_{\nu} \binom{2k_{\nu}}{k_{\nu}} A_{k_{\nu}}$$

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2 Estimation en fonction du nombre d'arêtes

Proposition (2018 : majoration par le nombre d'arêtes) Le nombre $Calc_{\mathbb{S}^2}(c)$ de courbes combinatoires algébriques enracinées de la sphère ayant c arêtes vérifie, pour une certaine constante ρ l'inégalité : $Calc_{\mathbb{S}^2}(c) \leq c^3 \rho^c$. On peut choisir $\rho \leq 96 e^{\frac{1}{3}} < 134$ donc $Calc_{\mathbb{S}^2}(c) = o(134^c)$. Énumération des courbes combinatoires algébriques sur \mathbb{S}^2 Estimation en fonction du nombre d'arêtes

Proposition (2018 : majoration par le nombre d'arêtes) Le nombre $Calc_{\mathbb{S}^2}(c)$ de courbes combinatoires algébriques enracinées de la sphère ayant c arêtes vérifie, pour une certaine constante ρ l'inégalité : $Calc_{\mathbb{S}^2}(c) \leq c^3 \rho^c$. On peut choisir $\rho \leq 96 e^{\frac{1}{3}} < 134$ donc $Calc_{\mathbb{S}^2}(c) = o(134^c)$.

Remarque (Non optimalité de la borne : deux sources)

- On utilise A_{k+1} ≤ 2 × 6^k (^{2k}_k) mais on a A_k ≤ a'₀ k^{-3/2} α^{-k} et les dix premières termes suggèrent que a'₀ = α convient. Avec cela on aurait ρ < 83.
- La majoration $\sum_{[k]=(s,c)} \prod_{\nu=1}^{s} k_{\nu}^{-1} \leq {\binom{c-1}{s-1}}$ est perfectible.

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2 Estimation en fonction du nombre d'arêtes

Proposition (2018 : majoration par le nombre d'arêtes)

Le nombre $Calc_{\mathbb{S}^2}(c)$ de courbes combinatoires algébriques enracinées de la sphère ayant c arêtes vérifie, pour une certaine constante ρ l'inégalité : $Calc_{\mathbb{S}^2}(c) \leq c^3 \rho^c$. On peut choisir $\rho \leq 96 e^{\frac{1}{3}} < 134$ donc $Calc_{\mathbb{S}^2}(c) = o(134^c)$.

Remarque (Sur le plan réel)

Le choix d'une face à l'infini permet d'en déduire une majoration similaire pour le plan : $Calc_{\mathbb{R}^2}(c) \leq c^4 \rho^c$.

Majoration du nombre de courbes algébriques de \mathbb{RP}^2

Du nombre d'arêtes au degré

La généralisation de Rosenlicht des formules de Plücker entraîne :

$$\sum_{\nu, \ k_{\nu}=1} 1 + \sum_{\nu, \ k_{\nu}>1} \frac{k_{\nu}(k_{\nu}-1)}{2} \leq \frac{(d-1)(d-2)}{2}$$

Donc :

$$c=\sum_{\nu}k_{\nu}\leq \frac{(d-1)(d-2)}{2}.$$

Majoration du nombre de courbes algébriques de \mathbb{RP}^2

Théorème (2018 : majoration du nombre de courbes de \mathbb{RP}^2) Le nombre $Cal_{\mathbb{RP}^2}(d)$ de courbe combinatoires enracinées algébriques de degré d du plan projectif vérifie pour un $\rho > 0$:

$$\operatorname{Cal}_{\mathbb{RP}^2}(d) \leq \frac{d^8}{16} \rho^{\frac{d^2}{2}}.$$

Comme on peut prendre $\rho < 134$, on a $Cal_{\mathbb{RP}^2}(d) = o(12^{d^2})$.

Remarque (Conjecturale)

Si comme conjecturé $\rho < 83$ convenait : $Cal_{\mathbb{RP}^2}(d) = o(10^{d^2})$.

Majoration du nombre de courbes algébriques de \mathbb{RP}^2

Théorème (2018 : majoration du nombre de courbes de \mathbb{RP}^2) Le nombre $Cal_{\mathbb{RP}^2}(d)$ de courbe combinatoires enracinées algébriques de degré d du plan projectif vérifie :

$$Cal_{\mathbb{RP}^{2}}(d)=o\left(12^{d^{2}}
ight).$$

Remarque (2014 : courbes lisses non connexes)

Kharlamov et Orevkov ont encadré asymptotiquement le nombre de classes d'isotopie algébrique de courbes algébriques lisses de \mathbb{RP}^2 de degré d, par des expressions de la forme $\exp(Cd^2 + o(d^2))$.

From singularities to combinatorics and back again

Singularités analytiques réelles :

- ► Topologie des singularités : diagrammes de cordes et graphes.
- Outils : éclatement puis combinatoire « algorithmique ».
- Structure des configurations locales et dénombrement.
- Outils : Grammaire inambigüe, combinatoire analytique.

From singularities to combinatorics and back again

Singularités analytiques réelles :

- ► Topologie des singularités : diagrammes de cordes et graphes.
- Outils : éclatement puis combinatoire « algorithmique ».
- Structure des configurations locales et dénombrement.
- Outils : Grammaire inambigüe, combinatoire analytique.

From singularities to combinatorics and back again

Courbes algébriques réelles singulières :

- ► Topologie globale : courbes combinatoires.
- Outils : éclatement, approximation algébrique.
- Énumération des types topologiques
- Outils : Dénombrement de Tutte + configurations locales.

From singularities to combinatorics and back again

Courbes algébriques réelles singulières :

- ► Topologie globale : courbes combinatoires.
- Outils : éclatement, approximation algébrique.
- Énumération des types topologiques
- Outils : Dénombrement de Tutte + configurations locales.

From singularities to combinatorics and back again

Que faire ensuite?

- Perturber : diagrammes obtenus par diverses perturbations.
- Stratification et relation d'ordre sur les diagrammes.
- Surfaces : halos des singularités.