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What is the topology of an algebraic curve in the plane ?

Algebraic curve in the real plane: F (x , y) = 0, F ∈ R[x , y ].
▶ Singular points: ∂xF (0, 0) = ∂yF (0, 0) = 0.
▶ Connected components of the real locus of dimension 1.



What is the topology of an algebraic curve in the plane ?

We wish to understand:
▶ the combinatorics of local branches at singular points
▶ the isotopy class of the whole real locus



Road map

Topology and combinatorics of singularities
Combinatorial invariants and their structure
Enumerations of the combinatorial invariants

Topology and combinatorics of singular algebraic curves



Singularities of algebraic curves in the real plane

A convergent serie F ∈ R{x , y} with F (0, 0) = 0 and x ∤ F .
Vanishes along a finite union of germs of injectively parametrized
segments intersecting only at the origin:

t 7→ (±tm, f (t)) f ∈ R{t}.

In red: x5 + x4 + 2yx2 + y2 = 0



The chord diagram of the singularity
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Chord diagram: encodes topology of the link of the singularity.



The interlace graph of the chord diagram
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Interlace graph: encodes the linking matrix of the singularity.



The interlace graph of the chord diagram
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Questions: combinatorics and enumeration.
Which chord diagrams and graphs arise from singularities ?
How many diagrams are there for a given number of branches ?



Recursive description of analytic chord diagrams
Definition: simplification of a chord diagram.
Delete the letter "a" in a pattern consisting of:

aa a
a a

a a

ab

b b

b

b

b

an isolated chord, a fork, a pair of (true or false) twins.

Theorem [Ghy17]: analytic chord diagrams.
▶ The empty word is an analytic chord diagram.
▶ A non-empty diagram with no simplifications is not analytic.
▶ A non-empty diagram is analytic if and only if any of its

simplications is analytic.



Blowups: intuition, geometry, terminology, algebra

To Blowup a point of smooth surface germ (S , o) consists in
replacing o by its set of tangent directions in S .
Enables to distinguish first order behaviour in the vicinity of o.
There exists a morphism π : (Ŝ ,E ) → (S , o) with E ≃ P1

inducing an isomorphism between Ŝ \ E and S \ o.
It is unique up to unique isomorphism above S .
The curve E is called the exceptional divisor.
The germ Ĉ = π−1(C \ {o}) is the strict transform of C .
In terms of the field of functions OS ,o ≃ R{x , y} at o, the
blowup is given by a change of variables y 7→ t = y/x .



Blowing up a point in a real surface yields a Möbius band

Construction.
The graph of (x , y) ∈ R2 7→ y/x ∈ RP1 is the quadric y = tx .
Its closure in R2 × RP1 is homeomorphic to a Möbius band.

Blowing up a pencil of lines and a cusp.



Successive blowups resolve singularity yielding tree of P1

▶ To resolve a singular germ C one must distinguish higher order
tangencies: successive blowups.

▶ ∃ morphism Ψ: (Ŝ ,E ) → (S , o), isomorphism outside E ,
such that Ĉ is smooth and Ĉ ⋔ E .

▶ The dual graph to the P1 ↪→ E is a rooted tree.
The surface Ŝ is a plumbing of their tubular neighbourhoods,
which retracts by deformation onto E .



A tree of annuli and Möbius bands

Over R
▶ The surface Ŝ is a plumbing of annuli and Möbius bands
▶ Its connected boundary ∂Ŝ intersects Ĉ in pairs of points.



Which invariants come from singularities ?
Theorem [GS20]: Interlace graphs of analytic chord diagrams.
▶ Collapsible: recursive description analogous to analytic

diagrams (equivalence is non trivial !).
▶ No house, gem, domino or (n > 4)-cycle as induced subgraph.

Corollary [GS20]: characterisation of analytic chord diagrams.
The forbidden patterns for the partial order on chord diagrams are:

n > 4



Road map

Topology and combinatorics of singularities
Combinatorial invariants and their structure
Enumerations of the combinatorial invariants

Topology and combinatorics of singular algebraic curves



Split decomposition of graphs (Cunningham & Gioan-Paul)

Definition: Split of a graph G = (V ,E )

A bipartition of its vertices V = A1 ∪ A2 is non-trivial if |Ak | > 1.
A split is a non-trivial bipartition with B1 ⊂ A1, B2 ⊂ A2 such that

Edges(A1,A2) = Clique(B1,B2)
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Split decomposition of graphs (Cunningham & Gioan-Paul)

Factorise by adding control vertices: obtain a graph-labelled-tree,
with internal nodes labelled by the graphs induced by Ak ∪ {xk}.
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Continue until all nodes are labelled by graphs which are
prime (no splits) or degenerate (all non-trivial bipartitions = splits).



Split decomposition of graphs (Cunningham & Gioan-Paul)

This may look like:
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Here all nodes are labelled by degenerate graphs: star & clique.



Split decomposition of graphs (Cunningham & Gioan-Paul)

A graph-labelled-tree is reduced if no clique-join or star-join:

= =

Cunningham’s split decomposition theorem after Gioan-Paul:
Every connected graph admits a unique factorisation into a reduced
graph-labelled-tree.



Split decomposition of graphs (Cunningham & Gioan-Paul)

Conversely, we recover the accessibility graph of the leaves:
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Collapsible graphs are (star & clique)-labelled-trees

Corollary: characterisation collapsible graphs as SK -graphs.
A connected collapsible graph is the accessibility graph of a unique
reduced graph-labelled-tree whose nodes are all degenerate.

Operad structure (context-free grammar)
Consider SK -trees with leaves labelled by {0, . . . , n}, compose
them by branching 0-leaf of children on > 0-leaves of parents.

BK BS∗ BS∗ BS′

K1+n S∗n S ′nZ



Operad of connected analytic chord diagrams with marking

▶ Lift the SK -tree factorisation of bushes (unlabeled but rooted)
to connected rooted chord diagrams.

▶ A bush yields several chord diagrams differing by mutations:

▶ A rooted diagram has a left hand side and a right hand side.
▶ A rooted tree induces a partial order on its nodes.



Operad of connected analytic chord diagrams with marking

Decorate internal nodes of a tree by the connected chord diagrams:

T4 K5
D∗4 S∗4 D′1,2 S ′4

They are unlabelled but rooted. Retain left & right while inserting.

gauche droit

v+1

v+2

v−1

v−2

Contraction



Context-free grammar

Lemma [Sim22]: unique factorisation of rooted diagrams.
The connected and rooted analytic chord diagrams correspond
bijectively to the rooted trees whose nodes are degenerate chordiag.

Equations for the grammar of connected rooted diagrams.

C (z) =
1
2
(CT + CD∗ + CD′)

CT (z) = z +
∑
n>1

Cn
D∗ +

∑
k+l>0

CD′C k+l
D∗

CD∗(z) = z +
∑
n>1

Cn
T +

∑
k+l>0

CD′C k+l
D∗

CD′(z) = z +
∑
n>1

Cn
D∗ +

∑
n>1

Cn
T



Counting analytic chord diagrams: linear and connected

Proposition [Sim22]: Analytic chordiag, marked & connected.
Algebraic generating series: 2C 3 + (z + 2)C 2 + (2z − 1)C + z = 0.
Asymptotic: Cn ∼ c0 n

− 3
2 γ−n with 13 < γ−1 < 14:

γ =
1
12

(
49 − 433

3
√

24407 − 1272
√

318
− 3
√

24407 − 1272
√

318

)

Closed formula by Lagrange inversion:

Cn =
1
n

n−1∑
k=0

(
n − 1 + k

n − 1

)(
2n + k

n − 1 − k

)
2k

First terms of the sequence (Cn)n∈N:
1, 4, 27, 226, 2116, 21218, 222851, 2420134, 26954622, 306203536.



Counting analytic chord diagrams: linear

3 cordes, 5 = (2× 3− 1) interstices 2 cordes, 3 interstices

Theorem [Sim22] Analytic chord diagrams with marking.
The generating series of linear analytic diagrams is algebraic:
(z3 + z2)A6 − z2A5 − 4zA4 + (8z + 2)A3 − (4z + 6)A2 + 6A− 2 = 0.

Asymptotic: An ∼ a0 n
− 3

2 α−n where 15 < α−1 < 16.
First terms of the sequence (An)n∈N (checked algorithmically):
1, 1, 3, 15, 105, 923, 9417, 105815, 1267681, 15875631, 205301361

Proposition [Sim22]: Analytic chord diagrams Ãn ∼ An

n



Road map

Topology and combinatorics of singularities

Topology and combinatorics of singular algebraic curves
Global topology: which obstructions ?
Enumeration of configurations in S2 and RP2



Question of global configurations

Globally, a real algebraic curve consists in a collection of
singularities connected by smooth arcs.

Definition of a combinatorial curve in S
A map of S with vertices decorated by chord diagrams.
Formulation with three permutations on the set of rays.



No global obstructions in the analytic category

Theorem [Sim22]: Analytic combinatorial curves
Every combinatorial curve with analytic chord diagrams arises from
a real analytic curve.

Proof sketch.
▶ Realise the combinatorial curve by C∞-smooth arcs

connecting analytic singularities.
▶ Blowup surface S at singular points to find smooth curve in Ŝ .
▶ Construct a C 1-approximation by analytic smooth curve :

Fourier series and Chebychev polynomials, then orthogonal
projection (Kollár) and local-to-global (Cartan H1(S ;O) = 0).

▶ Implode approximating curve.



Homological obstructions to algebraic approximations

Definition: Algebraic approximation of Y ⊂ X .
In a real algebraic variety X , a closed and C∞-smooth submanifold
i : Y ↪→ X admits an algebraic approximation if
every neighbourhood of i in C∞(X ,Y ) contains a map
h : Y → X such that h(Y ) is Zariski closed and non-singular.

Homology of a real algebraic surface Halg
1 (S ;Z/2).

▶ Subcomplex C alg
∗ (S ;Z/2) of algebraic chains in C cell

∗ (S ;Z/2)
Algebraic homology Halg

∗ (S ;Z/2)
▶ The Halg

1 (S ;Z/2) is the subvector space of Htop
1 (S ;Z/2)

generated by algebraic cycles (as every 0-cycle is algebraic).

Algebraic approximation theorem of Nash-Tognoli.
In a real algebraic surface X , a compact smooth hypersurface Y
admits an algebraic approximation ⇐⇒ [Y ] ∈ Halg

1 (X ;Z/2).



Global obstructions in the algebraic category are homological

Theorem [Sim22]: Algebraic combinatorial curves
Every combinatorial curve with analytic chord diagrams and
algebraic fundamental class arises from a real algebraic curve.

Proof sketch.
▶ Realise the combinatorial curve by C∞-smooth arcs

connecting analytic singularities.
▶ Blowup C ⊂ S at singular points to find smooth Ĉ ↪→ Ŝ .
▶ Notice that Halg

1 (Ŝ ;Z/2) = Halg
1 (Ŝ ;Z/2) + Z/2 · [E ]

so the smooth compact Ĉ has [Ĉ ] ∈ Halg
1 (Ŝ ;Z/2)

and Nash-Tognoli provides an algebraic approximation.
▶ Implode approximating curve.



Road map

Topology and combinatorics of singularities

Topology and combinatorics of singular algebraic curves
Global topology: which obstructions ?
Enumeration of configurations in S2 and RP2



Enumeration of algebraic combinatorial curves in S2

Definition of a slicing.
Surface Pk = S2 \

⊔s
l=1 D2 with 2k = (2k1, . . . , 2ks) ∈ (2N∗)s

indicating decorated points on boundary components Jl .
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A slicing of P(6,4,4,4,6,4,4,4).



Enumeration of algebraic combinatorial curves in S2
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A slicing of P(6,4,4,4,6,4,4,4).

Tutte counts slicings Pk with one marked point per boundary:

(c − 1)!
(c − s − 2)!

s∏
v=1

kv

(
2kv
kv

)
.



Enumeration of algebraic combinatorial curves in S2

Theorem [Sim22]: Algebraic combinatorial curves in S2

The number of algebraic combinatorial curves of S2 with s indexed
vertices decorated by rooted chord diagrams of sizes k1, . . . , kv is:

(c − 1)!
(c − s − 2)!

s∏
v=1

kv

(
2kv
kv

)
Akv .



Bounding the number of algebraic curves in RP2

Proposition [Sim22]: majoration by the number of edges.
The number Calc S2 (c) of rooted algebraic combinatorial curves of
the sphere with c edges satisfies: Calc S2 (c) ≤ c3 ρc for ρ < 134.

Theorem [Sim22]: domination by the algebraic degree.
The number CalRP2 (d) of rooted combinatorial curves realised by
algebraic curves of degree d in the projective plane RP2 satisfies:

CalRP2 (d) = o
(
12d

2
)
.

Comparing with Kharlamov-Orevkov estimation
The number of algebraic isotopy classes of (maybe disconnected)
smooth algebraic curves in RP2 with degree d is asymptotically
contained between expressions of the form exp (Cd2 + o(d2)).



Summary: Real analytic singularities
Between analytic or algebraic singularities and algebraic or analytic combinatorics

Topology of singularities: chord diagrams & interlace graphs.
▶ Structure: blowup and algebraic combinatorics.
▶ Enumeration: Split decomposition, analytic combinatorics.
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Summary : Real algebraic singular curves in a surface
Between analytic or algebraic singularities and algebraic or analytic combinatorics

Global topology: combinatorial curve.
▶ Structure: blowup and analytic or algebraic approximation.
▶ Enumeration: Tutte’s enumeration & local configurations.

Nash-Tognoli Halg
1 ⊂ H1

(c − 1)!
(c − s − 2)!

s∏
v=1

kv

(
2kv
kv

)
Akv



Merci d’avoir écouté...

A big connected analytic cord diagram (M. Maazoun, 14/12/18).



... et bon appétit !
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