Arithmetic and Topology of Modular Knots

Christopher-Lloyd Simon

Pennsylvania State University

Brown Geometry & Topology Seminar 2022-11-16

The modular group and its action on the hyperbolic plane

Arithmetic equivalence of modular geodesics

Linking numbers of modular knots

The modular group and its action on the hyperbolic plane

Arithmetic equivalence of modular geodesics

Linking numbers of modular knots

The isometry group $\mathsf{PSL}_2(\mathbb{R})$ of the hyperbolic plane \mathbb{PH}

$$\mathsf{SL}_2(\mathbb{R}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \middle| \begin{smallmatrix} a,b,c,d \in \mathbb{R} \\ ad-bc=1 \end{smallmatrix} \right\} \qquad \mathfrak{sl}_2(\mathbb{R}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \middle| \begin{smallmatrix} a,b,c,d \in \mathbb{R} \\ a+d=0 \end{smallmatrix} \right\}$$

 $\mathsf{PSL}_2(\mathbb{R}) = \mathsf{SL}_2(\mathbb{R}) / \{ \pm 1 \} \qquad \mathbb{H} = \{ \mathfrak{a} \in \mathfrak{sl}_2(\mathbb{R}) \mid \mathsf{det}(\mathfrak{a}) = 1 \}$

Projectivization of the two-sheeted hyperboloid $\mathbb{H} \to \mathbb{PH}$

The isometry group $\mathsf{PSL}_2(\mathbb{R})$ of the hyperbolic plane \mathbb{PH}

 $A \in \mathsf{PSL}_2(\mathbb{R})$ \curvearrowright $\mathfrak{a} \in \mathbb{PH}$: $A \cdot \mathfrak{a} = A\mathfrak{a}A^{-1}$

Isometries : elliptic, parabolic, hyperbolic

disc $(A) = (Tr A)^2 - 4 \in [-4, 0[\sqcup \{0\} \sqcup]0, +\infty[$

Action of the modular group $\mathsf{PSL}_2(\mathbb{Z})$ on \mathbb{PH}

 $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad T = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \qquad R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad L = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Tiling \mathbb{PH} under the action of the modular group $\mathsf{PSL}_2(\mathbb{Z})$

The modular orbifold $\mathbb{M} = \mathsf{PSL}_2(\mathbb{Z}) \backslash \mathbb{PH}$

$$\pi_1(\mathbb{M}) = \mathsf{PSL}_2(\mathbb{Z}) = \mathbb{Z}/2 * \mathbb{Z}/3 \qquad S = \left(egin{smallmatrix} 0 & -1 \ 1 & 0 \end{smallmatrix}
ight) \quad T = \left(egin{smallmatrix} 1 & -1 \ 1 & 0 \end{smallmatrix}
ight)$$

Homotopy classes of loops in the modular orbifold

Free homotopy classes of	lasses of Conjugacy classes in	
oriented loops in ${\mathbb M}$	$\pi_1(\mathbb{M}) = PSL_2(\mathbb{Z})$	
Around conic singularity i or j	Elliptic : S or $T^{\pm 1}$	
Suround n times the cusp ∞	Parabolic : R^n , $n \in \mathbb{Z}$	
∃! geodesic representative	Hyperbolic :	
$\gamma_{\mathcal{A}}$ of length $\lambda_{\mathcal{A}}$	$disc(A) = \left(2\sinh\frac{\lambda_A}{2}\right)^2$	

The axis of A = RL in \mathbb{PH} projects onto γ_A in \mathbb{M} .

Modular geodesics : projections of the hyperbolic axes

The axis of A = RLL in \mathbb{PH} projects onto γ_A in \mathbb{M} .

The axis of A = RLLL in \mathbb{PH} projects onto γ_A in \mathbb{M} .

Modular geodesics : projections of the hyperbolic axes

Projecting the portion of an axis encoded by $S^{-1}T^{-2}S^{-1}$.

The modular group and its action on the hyperbolic plane

Arithmetic equivalence of modular geodesics

Linking numbers of modular knots

Class group $\mathsf{Cl}(\Delta)$ of discriminant Δ

 $\begin{array}{c} \text{Same length} \\ \lambda(\gamma_A) = \lambda(\gamma_B) \end{array} \iff \begin{array}{c} \text{Same discriminant} \\ \text{disc}(A) = \text{disc}(B) \end{array} \iff \begin{array}{c} \text{Conjugated in } \mathbb{C} \\ \exists C \in \text{PSL}_2(\mathbb{C}) \\ CA = BC \end{array}$

The classes $Cl(\Delta)$ for this equivalence relation have :

- finite cardinals, (Lagrange 1775 : reduction of quadratic forms)
- unbounded cardinals, (Horowitz 1972 : trace relations in SL₂)
- structures of abelian groups.
 (Gauss 1801 : composition of quadratic forms)

Arithmetic \mathbb{K} -equivalence

Definition :

For a field $\mathbb K$ extending the rationals $\mathbb Q$:

 $\begin{array}{ll} A,B\in\mathsf{PSL}_2(\mathbb{Z}) & \mathsf{definition} \\ \mathbb{K}\text{-equivalent} & \Longleftrightarrow & \begin{array}{l} \mathsf{Conjugated over} \ \mathbb{K} \\ \exists C\in\mathsf{PSL}_2(\mathbb{K}): \\ CA=BC \end{array}$

Remarks and consequences :

- The \mathbb{K} -equivalence implies in particular disc(A) = disc(B).
- ► The finest equivalence relation is Q-equivalence.

Questions :

- 1. Understand the grouping of $\mathsf{PSL}_2(\mathbb{Z})\text{-classes}$ into $\mathbb{K}\text{-classes}.$
- 2. Find geometric & arithmetic interpretations of K-equivalence.

Arithmetico-geometric interpretation of the $\mathbb{K}\text{-equivalence}$

$\mathsf{Theorem}: \mathbb{K}\text{-equivalence of modular geodesics}$

 $A, B \in \mathsf{PSL}_2(\mathbb{Z})$ with discriminant $\Delta > 0$ are \mathbb{K} -equivalent $\iff \gamma_A, \gamma_B \subset \mathbb{M}$ satisfy the following equivalent conditions : θ : \exists an intersection point with angle $\theta \in]0, \pi[$ such that :

$$\left(\cos\frac{\theta}{2}\right)^2 = X^2 - \Delta Y^2$$
 for $X, Y \in \mathbb{K}$

in which case this holds \forall intersection points.

Angle well defined in $]0, \pi[.$

Arithmetico-geometric interpretation of the $\mathbb{K}\text{-equivalence}$

$\mathsf{Theorem}: \mathbb{K}\text{-equivalence of modular geodesics}$

 $A, B \in \mathsf{PSL}_2(\mathbb{Z})$ with discriminant $\Delta > 0$ are \mathbb{K} -equivalent $\iff \gamma_A, \gamma_B \subset \mathbb{M}$ satisfy the following equivalent conditions : $\lambda: \exists$ a co-oriented ortho-geodesic of length λ such that :

$$\left(\cosh\frac{\lambda}{2}\right)^2 = X^2 - \Delta Y^2 \quad \text{for} \quad X, Y \in \mathbb{K}$$

auquel cas c'est vrai \forall ortho-géodésique co-orientée.

Ortho-geodesics : co-oriented and dis-co-oriented.

Geometric proof : adjoint action $\mathsf{PSL}_2(\mathbb{K}) \curvearrowright \mathbb{P}(\mathfrak{sl}_2(\mathbb{K}))$

$$\begin{array}{ccc} C \in \mathsf{SL}_2(\mathbb{K}) \\ AC = CB \end{array} &\longleftrightarrow & (x,y) \in \mathbb{K} \times \mathbb{K} \\ & x^2 - \frac{1}{4}\Delta y^2 = \chi \end{array}$$

$$rac{1}{\mathsf{bir}(lpha',lpha,eta',eta)} = \left(\cosrac{ heta}{2}
ight)^2$$

 $\frac{1}{\operatorname{bir}(\alpha',\alpha,\beta',\beta)} = \left(\cosh\frac{\lambda}{2}\right)^2$

Remarks :

• We ask that the quantities $c^2 = 1/\text{ bir belong to the group of norms of the quadratic extension <math>\mathbb{K}(\sqrt{\Delta})/\mathbb{K}$.

Symmetric conjugacy classes in $PSL_2(\mathbb{Z})$:

 $\begin{array}{c} A = CA^{-1}C \\ \gamma_A = \gamma_{A^{-1}} \end{array} \iff \begin{array}{c} \gamma_A \text{ passes through } i \\ [i] \in \gamma_A \subset \mathbb{M} \end{array} \implies \begin{array}{c} c^2 \text{ et } 1 - c^2 \in \\ \mathsf{Norm}(\mathbb{Q}(\sqrt{\Delta})/\mathbb{Q}) \end{array}$

Remarks :

- We ask that the quantities c² = 1/bir belong to the group of norms of the quadratic extension K(√∆)/K.
- Equivalence relation : for every Δ > 0, those properties on the intersection points and ortho-geodesics are *transitive* !

The modular group and its action on the hyperbolic plane

Arithmetic equivalence of modular geodesics

Linking numbers of modular knots

Unit tangent bundle ${\mathbb U}$ of the modular orbifold ${\mathbb M}$

Modular knots in $\ensuremath{\mathbb{U}}$

Hyperbolic classes in	Modular geodesics in	Periodic orbits in
$\pi_1(\mathbb{M}) = PSL_2(\mathbb{Z})$	\mathbb{M}	\mathbb{U}
primitive	primitive	primitive

The modular geodesics γ_A lift to modular knots k_A

Understand the topology of the master modular link

Two modular knots linking one another in the complement of the trefoil.

Conjugacy classes and cyclic binary words

Euclidean monoid

$$R = TS^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $L = T^{-1}S = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

$$SL_2(\mathbb{Z}) = Group(L, R) \supset SL_2(\mathbb{N}) = Monoid(L, R)$$

 $PSL_2(\mathbb{Z}) = Group(L, R) \supset PSL_2(\mathbb{N}) = Monoid(L, R)$

Conjugacy class [A] of an infinite order $A \in \mathsf{PSL}_2(\mathbb{Z})$:

- ▶ $[A] \cap \mathsf{PSL}_2(\mathbb{N})$: cyclic permutations of an *L*&*R*-word $\neq \emptyset$.
- Class is primitive \iff cyclic word is primitive.
- Class is hyperbolic $\iff \#L > 0$ and #R > 0.

Combinatorics of words \leftrightarrow Topology of links

Definition : combinatorial invariants

For the conjugacy class of $A \in \mathsf{PSL}_2(\mathbb{N})$ we define :

- ▶ its combinatorial length len([A]) = #R + #L
- ▶ its Rademacher number Rad([A]) = #R #L

Theorem [Ghys 2006] :

For every hyperbolic conjugacy class [A] in $PSL_2(\mathbb{Z})$:

 $Rad([A]) = lk(trefoil, k_A)$

Question [Ghys 2006] :

Arithmetic interpretation of the linking number $lk(k_A, k_B)$ between two modular knots k_A, k_B ?

Definition : « bivariate Poincaré series » For hyperbolic $A, B \in PSL_2(\mathbb{Z})$ we defined the sum :

$$L_1([A], [B]) := \sum \left(\cos \frac{\theta}{2}\right)^2 \in \mathbb{R}^*_+$$

over the angles at intersection points $\gamma_A \cap \gamma_B$.

Deform the hyperbolic metric on $\mathbb M$ by opening the cusp...

The orbifolds $\mathbb{M} = \mathbb{M}_1$ and its deformation \mathbb{M}_q with $q = (2 \sinh \frac{\lambda}{2})^2$

Character variety $X(\mathsf{PSL}_2(\mathbb{Z}), \mathsf{PSL}_2(\mathbb{R}))$

Caracters of Fuchsian representations :

$$\left\{ \begin{matrix} \mathsf{Complete hyperbolic} \\ \mathsf{metrics on } \mathbb{M} \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \rho \colon \mathsf{PSL}_2(\mathbb{Z}) \to \mathsf{PSL}_2(\mathbb{R}) \\ \rho \text{ faithful } \& \text{ discrete} \end{matrix} \right\} / \mathsf{PSL}_2(\mathbb{R})$$

- Real algebraic torus of dim 1, parametrized by $q \in \mathbb{R}^*$.
- The matrix A_q = ρ_q(A) is obtained from a factorisation of A into a product of L&R by replacing L → L_q and R → R_q where

$$L_q = \begin{pmatrix} q & 0 \\ 1 & q^{-1} \end{pmatrix} \qquad \qquad R_q = \begin{pmatrix} q & 1 \\ 0 & q^{-1} \end{pmatrix}$$

 $\rho_q \colon \mathsf{PSL}_2(\mathbb{Z}) \to \mathsf{PSL}_2(\mathbb{Z}[q,q^{-1}])$

The bivariate Poincaré q-series $L_q(A, B)$

Conjugacy classes of infinite order	Closed oriented geodesics
(hyperbolic)	(non peripheral)
$in\;\pi_1(\mathbb{M}_q)=PSL_2(\mathbb{Z})$	in $\mathbb{M}_{q}= ho_{q}(PSL_{2}(\mathbb{Z}))ackslash\mathbb{P}\mathbb{H}$

Definition : « bivariate Poincaré *q*-series »

For hyperbolic $A, B \in \mathsf{PSL}_2(\mathbb{Z})$, we define the function :

$\mathsf{L}_q([A],[B]) := \sum \left(\cos rac{1}{2} heta_q ight)^2 \quad \in \sqrt{\mathbb{Q}(q)}$

where the sum ranges over the intersection angles θ_q of the q-modular geodesics $\gamma_{A_q}, \gamma_{B_q} \subset \mathbb{M}_q$.

This defines a function of $q \in \mathbb{R}^*$, or on $X(\mathsf{PSL}_2(\mathbb{Z}), \mathsf{PSL}_2(\mathbb{R}))$.

Linking function at the boundary of the character variety

Theorem : Linking number as evaluation of L_q at $+\infty \in \partial X$ For hyperbolic $A, B \in PSL_2(\mathbb{Z})$, we have the « special value » :

$$L_q([A], [B]) \xrightarrow[q \to +\infty]{} 2 \operatorname{lk}(k_A, k_B).$$

 $L_q(A, B)$ interpolates between arithmetic at 1 and topology at $+\infty$.

Proof using the action of $\mathsf{PSL}_2(\mathbb{Z})$ on the trivalent tree \mathcal{T}

1. Lift the convex core of \mathbb{M}_q in \mathbb{PH} : $\frac{1}{q^2}$ -neighbourhood of \mathcal{T}_q .

2. The representation ρ_q tends to the action of $PSL_2(\mathbb{Z})$ on \mathcal{T} .

Proof using the action of $\mathsf{PSL}_2(\mathbb{Z})$ on the trivalent tree \mathcal{T}

- 3. The angles $\theta_q \to 0 \mod \pi$ thus $\cos(\theta_q) \to \pm 1$.
- 4. The sum $L_q(A, B)$ counts the pairs of axes (+1, +1):

Proof using the action of $\mathsf{PSL}_2(\mathbb{Z})$ on the trivalent tree $\mathcal T$

5. In the unit tangent bundle of \mathbb{M}_q , the master *q*-modular link is isotoped into a branched surface called the Lorenz template

Proof using the action of $\mathsf{PSL}_2(\mathbb{Z})$ on the trivalent tree $\mathcal T$

6. We recover an algorithmic formula for linking numbers in terms of the *L*&*R*-cycles, using the topology of the Lorenz template.

Graphs of $q \mapsto L_q(A, B)$ for real and complex q

 $L_q(A, B)$ and $L_q(A, {}^tB)$ for A = B = RLL and ${}^tB = RRL$.

Graphs of $q \mapsto L_q(A, B)$ for real and complex q

 $L_q(A, B)$ and $L_q(A, {}^tB)$ for $A = B = RL^4$ and ${}^tB = R^4L$.

Graphs of $q \mapsto L_q(A, B)$ for real and complex q

 $L_q(A, B)$ and $L_q(A, {}^tB)$ for $A = B = RL^8$ and ${}^tB = R^8L$.

Moral of the story...

So many mysteries are concealed within a simple trefoil !

Région Hauts-de-France

More graphs of $q \mapsto L_q(A, B)$ for complex q

 $L_q(A, B)$ for various cycles A and B.