Valuations on the Character Variety Newton Polytopes and Residual Poisson bracket

Christopher-Lloyd Simon (in collaboration with Julien Marché)

PSU seminar GAP

11/04/2023

The $\mathsf{SL}_2(\mathbb{C})$ -character variety of a finitely generated group π

Definition: Character variety $X(\pi)$ of a finitely generated group π

- Representation variety $\operatorname{Hom}(\pi,\operatorname{SL}_2(\mathbb{C}))$, it admits an algebraic action $\operatorname{SL}_2(\mathbb{C})$ by conjugacy at the target.
- Character variety $X(\pi) = \text{Hom}(\pi, \text{SL}_2(\mathbb{C})) // \text{SL}_2(\mathbb{C})$ is the algebraic quotient = Spec(Invariant Functions)
- For $\alpha \in \pi$, invariant function: $t_{\alpha} : \rho \mapsto \text{Tr}(\rho(\alpha))$

Theorem [CP17]: Presentation of the algebra $\mathbb{C}[X(\pi)]$ of characters

The algebra $\mathbb{C}[X(\pi)]$ of invariant functions has

- generators the $t_{\alpha} : [\rho] \mapsto \mathsf{Tr}(\rho(\alpha))$ for $\alpha \in \pi$
 - ullet ideal of relations generated by t_1-2 and $t_lpha t_eta-t_{lphaeta}-t_{lphaeta-1}$

For π fundamental group of a closed oriented surface Σ

Multiloop $\cup \gamma_i$ with k self-intersections, apply trace relations to decompose:

$$(-t_{\alpha})(-t_{\beta})+(-t_{\alpha\beta})+(-t_{\alpha\beta-1})=0$$

$$\prod_{\mathrm{loops}} (-t_{\gamma_i}) = (-1)^k \sum_{2^k \, \mathrm{states}} \prod_{\mathrm{circles}} (-t_{\mu_j})$$

Theorem [PS00]: Linear basis for the algebra $\mathbb{C}[X(\Sigma)]$

- Multicurve $\mu\subset \Sigma$: disjoint union of simples curves μ_j and $t_\mu=\prod t_{\mu_j}.$
- The t_{μ} for $\mu \in \mathrm{MC}$ form a linear basis of the algebra $\mathbb{C}[X(\Sigma)]$.

Question: what does the decomposition of t_{γ} look like ?

Example (Tchebychev): inside an immersed annulus Σ_0^2

 \bullet Fundamental group $\pi=\mathbb{Z}$ is free on one generator α

$$\mathbb{C}[X(\Sigma_0^2)] = \mathbb{C}[x]$$

• $Tr(\alpha^n) = 2T_n(x/2)$ Tchecbychev polynomial of the first kind.

Example (Fricke): inside an embedded three holed sphere Σ_0^3

ullet Fundamental group $\pi=\langle a,b,c\mid abc=1
angle$ is free on two generators,

$$\mathbb{C}[X(\Sigma_0^3)] = \mathbb{C}[t_a, t_b, t_c] = \mathbb{C}[x, y, z]$$

• Diagram computation: $Tr([a, b]) = x^2 + y^2 + z^2 - xyz - 2$

Theorem [MS22]: Trace functions of multiloops are unitary

For all $\alpha_i \in \pi_1(\Sigma)$, the polynomial $\prod t_{\alpha_i} \in \bigoplus_{M \in \mathbb{Z}} t_{\mu}$ is unitary.

Valuations and simple valuations

Strategy to study decomposition of functions in the linear basis

- Define "monomial" valuations with respect to the linear basis MC
- Define the Newton set of f as the "extremal points" in its support

Definition [MS21]: Valuations on $\mathbb{C}[X(\Sigma)]$ centred at infinity

A valuation is
$$v \colon \mathbb{C}[X] \to \{-\infty\} \cup \mathbb{R}_+$$
 satisfying for all f,g :

$$v(f) = -\infty \iff f = 0$$

$$v(fg) = v(f) + v(g)$$

$$v(f+g) \le \max\{v(f), v(g)\}$$

Weak topology: pointwize convergence of the v(f) for $f \in \mathbb{C}[X]$.

A valuation $v : \mathbb{C}[X(\Sigma)] \to \{-\infty\} \cup \mathbb{R}_+$ is *simple* when for all $f = \sum m_\mu t_\mu$:

$$v(f) = \max\{v(t_\mu) \mid m_\mu \neq 0\}$$

Simple valuations are measured laminations

Theorem [MS21]: Simple valuations are the completion of $\mathbb{Q}\mathrm{MC}$

For $\lambda \in \mathrm{MC}$, there exists a unique simple valuation v_λ such that

$$\forall \alpha \in \pi_1(\Sigma)$$
: $v_{\lambda}(t_{\alpha}) = i(\lambda, \alpha)$

The set of simple valuations ML is equal to the completion of $\mathbb{Q}MC$.

→ Well defined by D. Thurston intersection formula:

$$i(\lambda, \alpha) = \bigvee_{\mu} \sum_{\mu_j} i(\lambda, \mu_j) = \max\{i(\lambda, \mu) \mid \text{states } \mu\} = v_{\lambda}(t_{\alpha})$$

$$= \max \qquad \text{and} \qquad \text{and}$$

Morphism v(fg) = v(f) + v(g) deduced from integrality of $\bigoplus_{n \in \mathbb{N}} F_n / F_{n-1}$ where $F_n = \text{Span}\{t_\alpha \mid \alpha \in \pi_1(\Sigma), i(\lambda, \alpha) \leq n\}$.

 \leftarrow Bass-Serre tree of $\mathsf{SL}_2(\mathbb{C}(X), \nu)$, Morgan-Otal Skora domination

Newton set of a function

Definitions [MS22]: Support, Extremal multicurve, Newton Set

The *support* of $f = \sum m_{\mu} t_{\mu} \in \mathbb{C}[X(\Sigma)]$ is $Supp(f) = \{\mu \in MC, m_{\mu} \neq 0\}.$

- A multicurve $\mu \in \mathsf{Supp}(f)$ is *extremal* in f if there exists a multicurve λ such that $i(\lambda, \mu) > i(\lambda, \nu)$ for all $\nu \in \mathsf{Supp}(f)$ distinct from μ .
- The Newton set $\Delta(f)$ of f is the set of extremal multicurves in f.
- The dual Newton polytope is $\Delta^*(f) = \{v \in ML \mid v(f) \leq 1\}.$

Theorem [MS22]: Trace functions of multiloops are unitary

For all $\alpha_j \in \pi_1(\Sigma)$, the polynomial $f = \prod t_{\alpha_j} \in \mathbb{C}[X(\Sigma)]$ is unitary:

$$\forall \mu \in \Delta(f)$$
: $m_{\mu} = \pm 1$

(Proof: Define acute valuations by $v(t_{\alpha_{-}}) \neq v(t_{\alpha_{+}})$ for all multiloop α with smoothings α_{-}, α_{+} at an intersection. Show that they are dense in ML.)

Quest: study the structure constants for multiplication

Question : What are the structure constants $c^{\xi}_{\mu
u}$ for multiplication ?

$$\mathbb{C}[X(\mathsf{\Sigma})] = igoplus_{\mu \in \mathrm{MC}} \mathbb{C} \cdot t_{\mu} \qquad t_{\mu} t_{
u} = \sum_{\xi \in \mathrm{MC}} c_{\mu
u}^{\xi} t_{\xi}$$

The linear basis of MC is far from monomial: $i(\mu, \nu) \neq 0 \implies t_{\mu}t_{\nu} \neq t_{\xi}$.

Example [FG00]: In the torus Σ_1 with the bracelet basis

- Fundamental group $\pi = \langle a, b \mid [a, b] = 1 \rangle \simeq \mathbb{Z}^2$ is abelian.
- Characters \simeq representations $a \mapsto \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}$ and $b \mapsto \begin{pmatrix} y & 0 \\ 0 & 1/y \end{pmatrix}$.
- Triangular change of basis from multicurves to bracelets $T_{p,q}=\operatorname{Tr}(a^pb^q)$ for $p\wedge q=1$ and $T_{np,nq}=Tcheb_n(T_{p,q})$:

$$\mathbb{C}[X(\Sigma_1)] = \mathbb{C}\left[x^{\pm 1}, y^{\pm 1}\right]^{\sigma} = \bigoplus_{\sigma \in \mathcal{F}} \mathbb{C} \cdot \mathcal{T}_{p,q}$$

• Product to sum: $T_{p,q} \cdot T_{r,s} = T_{p+r,q+s} + T_{p-r,q-s}$

The Luo products are extremal multicurves

Definition [Luo10]: Luo product of multicurves

For $\mu, \nu \in \mathrm{MC}$, define $L_{\mu}(\nu)$ from $\mu \cup \nu$ by smoothing intersections with left turns as we travel along segments of μ which meet segments of ν .

Proposition [MS22]: Luo products are extremal multicurves of $t_\mu t_ u$

For all $\mu, \nu \in \mathrm{MC}$ such that $i(\mu, \nu) > 0$, the Luo products $L_{\mu}(\nu)$ and $L_{\nu}(\mu)$ are distinct, and both belong to $\Delta(t_{\mu}t_{\nu})$, with coefficients $(-1)^{i(\mu,\nu)}$.

Quest : Structure constants of the Poisson algebra $\mathbb{C}[X(\Sigma)]$

Theorem [Gol86]: Poisson bracket on $\mathbb{C}[X(\Sigma)]$

The Atiyah-Bott Weil-Petersson Goldman symplectic structure on X defines a Poisson bracket on $\mathbb{C}[X(\Sigma)]$. For $\alpha, \beta \in \pi_1(S)$ it is given by

$$\{t_lpha,t_eta\} = \sum_{oldsymbol{p} \in lpha \cap eta} \epsilon_oldsymbol{p} \left(t_{lpha_oldsymbol{p}eta_oldsymbol{p}} - t_{lpha_oldsymbol{p}eta_oldsymbol{p}^{-1}}
ight)$$

where the sum ranges over all intersection points p between transverse representatives for $\alpha \cup \beta$ and ϵ_p is the sign of such an intersection, while α_p, β_p denote the homotopy classes of α, β based at p.

$$\{t_{lpha},t_{eta}\}=\sum_{\xi}w_{\xi}t_{\xi}=\sum_{\xi}\left(\sum_{\sigma_{\xi}}\prod_{p}\sigma_{\xi}(p)
ight)t_{\xi}$$
 (PB-state-sum)

where $w_{\xi} = \sum_{\sigma_{\xi}} \prod_{p} \sigma_{\xi}(p)$ is the sum over the smoothings $\sigma_{\xi} \colon \alpha \cap \beta \to \{\pm 1\}$ of $\alpha \cup \beta$ yielding the multiloop ξ .

Newton set of the Poisson bracket

Corollary [MS22]: " $\Delta(\{f,g\}) \subset \Delta(fg)$ "

For $f, g \in \mathbb{C}[X]$, we have $v(\{f, g\}) \leq v(fg)$ for all $v \in ML$.

This property amounts to the inverse inclusion of the dual polytopes:

$$\Delta^*(\{f,g\})\supset \Delta^*(fg)$$

Hence the Goldman Poisson bracket induces a residual Poisson bracket at any strict valuation ν . (This endows $T_{\nu}\mathrm{ML}$ with a symplectic structure...)

Proof: Apply unitarity of $t_{\alpha}t_{\beta}$ and (PB-state-sum) formula for $\{t_{\alpha}, t_{\beta}\}$.

Corollary [MS22]: Luo products are extremal multicurves of $\{t_{\mu},t_{\nu}\}$

For all $\mu, \nu \in MC$ such that $i(\mu, \nu) > 0$, the Luo products $L_{\mu}(\nu)$ and $L_{\nu}(\mu)$ are distinct, and both belong to $\Delta(\{t_{\mu}, t_{\nu}\})$, with coefficients $\pm i(\mu, \nu)$.

Proof: The (PB-state-sum) formula implies $L_{\mu}(\nu), L_{\nu}(\mu) \in \Delta(\{t_{\mu}, t_{\nu}\})$.

Poisson algebra structure on $\mathbb{C}[X(\Sigma_0^4)]$

Example: Product and Poisson bracket of $\alpha, \beta \subset \Sigma_0^4$ with $i(\alpha, \beta) = 2$

The Luo product are $L_{\alpha}(\beta) = \delta$ and $L_{\beta}(\alpha) = \gamma$ and

$$t_{\alpha}t_{\beta} = t_{c_{1}}t_{c_{3}} + t_{c_{2}}t_{c_{4}} - t_{\gamma} - t_{\delta} \qquad \{t_{\alpha}, t_{\beta}\} = 2t_{\delta} - 2t_{\gamma}$$
 $\Delta(t_{\alpha}t_{\beta}) = \{c_{1} \cup c_{3}, c_{2} \cup c_{4}, \gamma, \delta\} \qquad \Delta(\{t_{\alpha}, t_{\beta}\}) = \{\gamma, \delta\}$

The Newton set of $t_{\alpha}t_{\beta}$ decomposes ML into 4 domains where $i(\lambda,\alpha\cup\beta)$ equals the intersection of λ with $c_1\cup c_3$ or $c_2\cup c_4$ or γ or δ respectively. In the interior of these domains $\{t_{\alpha},t_{\beta}\}$ has residual values 0,0,-2,2.

Bibliography

C. De Concini and C. Procesi.

The invariant theory of matrices, volume 69. AMS, 2017.

C Frohman and R Gelca

Trans. AMS. 352:4877-4888, 2000.

Skein modules and the noncommutative torus.

W. Goldman.

Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Inventiones Mathematicae, 85(2):263-302, 1986.

F Luo

Simple loops on surfaces and their intersection numbers.

J. Differential Geometry, 85:73-115, 2010.

Julien Marché and Christopher-Lloyd Simon.

Automorphisms of character varieties.

Annales Henri Lebesgue, 4:591-603, 2021.

Valuations on the character variety: Newton polytopes and Residual Poisson Bracket, 2022.

To appear in Geometry & Topology.

J. Przytycki and A. Sikora.

On skein algebras and SL2(C)-character varieties.

Topology, 39(1):115-148, 2000.

Thank you for your attention and feel free to ask (m)any questions!

Teichmüller space embeds in real locus of character variety

- 2 By the uniformisation theorem, every complex structure on Σ is conformal to a unique hyperbolic structure.
- **3** A hyperbolic structure on Σ is uniquely determined by its holonomy representation $\rho \colon \pi_1(\Sigma) \to \mathsf{PSL}_2(\mathbb{R})$, well defined up to conjugacy.
- These correspond to the Fuchsian representations, or by Milnor-Wood inequalities to those with extremal euler class ±χ = ±(2 2g).
 If α: π1(Σ) → PSI 2(ℝ) has even euler class then it lifts to SI 2(ℝ), so
- **3** If $\rho: \pi_1(\Sigma) \to \mathsf{PSL}_2(\mathbb{R})$ has even euler class then it lifts to $\mathsf{SL}_2(\mathbb{R})$, so there are 2×2^{2g} copies of Teichmüller space in $X(\Sigma)$.
- Teichmüller space of Σ is Zariski dense in the character variety $X(\Sigma)$ (as Fuchsian representations form open subset of $\operatorname{Hom}(\pi,\operatorname{SL}_2(\mathbb{R}))$, which quotient to open subset of $X(\pi,\operatorname{SL}_2(\mathbb{R}))$.)
- $oldsymbol{0}$ Trace function of loop \leftrightarrow length of the unique geodesic:

$$t_{\alpha}([\rho]) = 2 \cosh(I_{\alpha}(m)/2)$$

Most simple valuations are strict

Thurston-Masur volume on the space ML

The topological space ML admits (a PL-structure of dim 6g-6 and) a unique $\operatorname{Mod}(\Sigma)$ -invariant Borelian measure up to scaling.

Defined on open subsets
$$U \subset \mathrm{ML}$$
 by: $\mathrm{Vol}(U) = \lim_{r \to \infty} \frac{\mathrm{Card}(r \cdot U \cap \mathrm{MC})}{r^{6g-6}}$

Definition [MS21]: Strict valuations (implies simple and positive)

A valuation $v \colon \mathbb{C}[X(\Sigma)] \to \{-\infty\} \cup \mathbb{R}_+$ is *strict* when for all $\mu, \nu \in \mathrm{MC}$:

$$\mu \neq \nu \implies v(t_{\mu}) \neq v(t_{\nu})$$

This implies in particular that it is simple, and that $v(t_{\mu}) > 0$ for all $\mu \neq \emptyset$.

Proposition [MS21]: Most simple valuations are strict.

The set of strict valuations has full measure in ML.

Residual value of a function at a strict valuation

Extend $v \in \mathrm{ML}$ to $v : \mathbb{C}(X) \to \{-\infty\} \cup \mathbb{R}$ by v(f/g) = v(f) - v(g).

- Group of values $\Lambda_{v} = v(\mathbb{C}(X))$, and rational rank dim $\mathbb{Q} \otimes \Lambda_{v}$.
- The transcendence degree of its residue field $k_v = \mathcal{O}_v/\mathcal{M}_v$.

Abhyankar inequality: $\operatorname{rat.rk}(v) + \operatorname{tr.deg}(k_v) \leq \dim(X) = 6g - 6$

Proposition [MS22]: strict
$$\iff$$
 tr. deg = 0 \iff rat. rk = 6g - 6

For a simple valuation $v \in \mathrm{ML}$ the following properties are equivalent: strict, that is $\forall \mu, \nu \in \mathrm{MC}: \mu \neq \nu \implies v(t_{\mu}) \neq v(t_{\nu})$

minimal transcendence degree: $\operatorname{tr.deg}(k_{\nu}) = 0$, or $k_{\nu} = \mathbb{C}$.

maximal rational rank: $\operatorname{rat.rk}(v) = 6g - 6 = \dim(X) = \dim(ML)$.

Definition: residual value at a strict valuation $v\in \mathrm{ML}$ of $f\in \mathcal{O}_v$

The residual value $f_{\nu} \in \mathbb{C}$ is defined as $(f \mod \mathcal{M}_{\nu}) \in k_{\nu}$. It equals the coefficient m_{μ} of t_{μ} for $\mu \in \Delta(f)$ such that $\nu(f) = \nu(t_{\mu})$.

Mirzakhani asymptotics as volumes of Newton Polytopes*

Topological interpretation of Vol $\Delta^*(t_\alpha)$.

For a multiloop α , can we give a topological interpretation for the Thurston-Masur volume Vol $\Delta^*(t_\alpha)$?

It vanishes unless α is *filling*, meaning it intersects every simple curve, in which case for every other filling multiloop β we have:

$$\lim_{r \to \infty} \frac{\mathsf{Card}\{\varphi \in \mathsf{Mod}(S) \mid i(\lambda, \varphi(\alpha)) \le r\}}{r^{6g-6}} = \frac{\mathsf{Vol}\,\Delta^*(t_\beta)\,\mathsf{Vol}\,\Delta^*(t_\alpha)}{m_g}$$

Computation in terms of elementary cones in ML indexed by $\Delta(f)$

Identification between measured laminations and simple valuations implies

$$orall f \in \mathbb{C}[X(\Sigma)]\colon \quad \Delta^*(f) = igcap_{\mu \in \mathsf{Supp}(f)} \Delta^*(t_\mu) = igcap_{\mu \in \Delta(f)} \Delta^*(t_\mu)$$

The $\Delta^*(t_\mu)$ are described by explicit sets of linear inequalities in any PL chart of ML, and the volume of their intersection is computable.