Valuations on the Character Variety
 Newton Polytopes and Residual Poisson bracket

Christopher-Lloyd Simon
(in collaboration with Julien Marché)

PSU seminar GAP

11/04/2023

The $\mathrm{SL}_{2}(\mathbb{C})$-character variety of a finitely generated group π

Definition: Character variety $X(\pi)$ of a finitely generated group π

- Representation variety $\operatorname{Hom}\left(\pi, \mathrm{SL}_{2}(\mathbb{C})\right)$, it admits an algebraic action $\mathrm{SL}_{2}(\mathbb{C})$ by conjugacy at the target.
- Character variety $X(\pi)=\operatorname{Hom}\left(\pi, \mathrm{SL}_{2}(\mathbb{C})\right) / / \mathrm{SL}_{2}(\mathbb{C})$ is the algebraic quotient $=\operatorname{Spec}($ Invariant Functions)
- For $\alpha \in \pi$, invariant function: $t_{\alpha}: \rho \mapsto \operatorname{Tr}(\rho(\alpha))$

Theorem [CP17]: Presentation of the algebra $\mathbb{C}[X(\pi)]$ of characters

The algebra $\mathbb{C}[X(\pi)]$ of invariant functions has

- generators the $t_{\alpha}:[\rho] \mapsto \operatorname{Tr}(\rho(\alpha))$ for $\alpha \in \pi$
- ideal of relations generated by $t_{1}-2$ and $t_{\alpha} t_{\beta}-t_{\alpha \beta}-t_{\alpha \beta^{-1}}$

For π fundamental group of a closed oriented surface Σ Multiloop $\cup \gamma_{i}$ with k self-intersections, apply trace relations to decompose:

$\left(-t_{\alpha}\right)\left(-t_{\beta}\right)+\left(-t_{\alpha \beta}\right)+\left(-t_{\alpha \beta^{-1}}\right)=0$

$$
\prod_{\text {loops }}\left(-t_{\gamma_{i}}\right)=(-1)^{k} \sum_{2^{k} \text { states circles }} \prod_{\text {cirl }}\left(-t_{\mu_{j}}\right)
$$

Theorem [PS00]: Linear basis for the algebra $\mathbb{C}[X(\Sigma)]$

- Multicurve $\mu \subset \Sigma$: disjoint union of simples curves μ_{j} and $t_{\mu}=\prod t_{\mu_{j}}$.
- The t_{μ} for $\mu \in \mathrm{MC}$ form a linear basis of the algebra $\mathbb{C}[X(\Sigma)]$.

Question: what does the decomposition of t_{γ} look like?
Example (Tchebychev): inside an immersed annulus Σ_{0}^{2}

- Fundamental group $\pi=\mathbb{Z}$ is free on one generator α

$$
\mathbb{C}\left[X\left(\Sigma_{0}^{2}\right)\right]=\mathbb{C}[x]
$$

- $\operatorname{Tr}\left(\alpha^{n}\right)=2 T_{n}(x / 2)$ Tchecbychev polynomial of the first kind.

Example (Fricke): inside an embedded three holed sphere Σ_{0}^{3}

- Fundamental group $\pi=\langle a, b, c \mid a b c=1\rangle$ is free on two generators,

$$
\mathbb{C}\left[X\left(\Sigma_{0}^{3}\right)\right]=\mathbb{C}\left[t_{a}, t_{b}, t_{c}\right]=\mathbb{C}[x, y, z]
$$

- Diagram computation: $\operatorname{Tr}([a, b])=x^{2}+y^{2}+z^{2}-x y z-2$

Theorem [MS22]: Trace functions of multiloops are unitary
For all $\alpha_{j} \in \pi_{1}(\Sigma)$, the polynomial $\prod t_{\alpha_{j}} \in \bigoplus_{M C} \mathbb{Z} \cdot t_{\mu}$ is unitary.

Valuations and simple valuations

Strategy to study decomposition of functions in the linear basis

- Define "monomial" valuations with respect to the linear basis MC
- Define the Newton set of f as the "extremal points" in its support

Definition [MS21]: Valuations on $\mathbb{C}[X(\Sigma)]$ centred at infinity
A valuation is $v: \mathbb{C}[X] \rightarrow\{-\infty\} \cup \mathbb{R}_{+}$satisfying for all f, g :

$$
\begin{aligned}
& v(f)=-\infty \Longleftrightarrow f=0 \\
& v(f g)=v(f)+v(g) \\
& v(f+g) \leq \max \{v(f), v(g)\}
\end{aligned}
$$

Weak topology: pointwize convergence of the $v(f)$ for $f \in \mathbb{C}[X]$.

Definition [MS21]: Simple valuation ("monomial" w.r.t. linear basis) A valuation $v: \mathbb{C}[X(\Sigma)] \rightarrow\{-\infty\} \cup \mathbb{R}_{+}$is simple when for all $f=\sum m_{\mu} t_{\mu}$:

$$
v(f)=\max \left\{v\left(t_{\mu}\right) \mid m_{\mu} \neq 0\right\}
$$

Simple valuations are measured laminations

Theorem [MS21]: Simple valuations are the completion of $\mathbb{Q M C}$ For $\lambda \in \mathrm{MC}$, there exists a unique simple valuation v_{λ} such that

$$
\forall \alpha \in \pi_{1}(\Sigma): \quad v_{\lambda}\left(t_{\alpha}\right)=i(\lambda, \alpha)
$$

The set of simple valuations ML is equal to the completion of $\mathbb{Q M C}$.
\rightarrow Well defined by D. Thurston intersection formula:

$$
i(\lambda, \alpha)=\bigvee \sum_{\mu} i\left(\lambda, \mu_{j}\right)=\max \{i(\lambda, \mu) \mid \text { states } \mu\}=v_{\lambda}\left(t_{\alpha}\right)
$$

Morphism $v(f g)=v(f)+v(g)$ deduced from integrality of $\bigoplus_{n \in \mathbb{N}} F_{n} / F_{n-1}$ where $F_{n}=\operatorname{Span}\left\{t_{\alpha} \mid \alpha \in \pi_{1}(\Sigma), i(\lambda, \alpha) \leq n\right\}$.
\leftarrow Bass-Serre tree of $\mathrm{SL}_{2}(\mathbb{C}(X), v)$, Morgan-Otal Skora domination

Newton set of a function

Definitions [MS22]: Support, Extremal multicurve, Newton Set

The support of $f=\sum m_{\mu} t_{\mu} \in \mathbb{C}[X(\Sigma)]$ is Supp $(f)=\left\{\mu \in \mathrm{MC}, m_{\mu} \neq 0\right\}$.

- A multicurve $\mu \in \operatorname{Supp}(f)$ is extremal in f if there exists a multicurve λ such that $i(\lambda, \mu)>i(\lambda, \nu)$ for all $\nu \in \operatorname{Supp}(f)$ distinct from μ.
- The Newton set $\Delta(f)$ of f is the set of extremal multicurves in f.
- The dual Newton polytope is $\Delta^{*}(f)=\{v \in \operatorname{ML} \mid v(f) \leq 1\}$.

Theorem [MS22]: Trace functions of multiloops are unitary
For all $\alpha_{j} \in \pi_{1}(\Sigma)$, the polynomial $f=\prod t_{\alpha_{j}} \in \mathbb{C}[X(\Sigma)]$ is unitary:

$$
\forall \mu \in \Delta(f): \quad m_{\mu}= \pm 1
$$

(Proof: Define acute valuations by $v\left(t_{\alpha_{-}}\right) \neq v\left(t_{\alpha_{+}}\right)$for all multiloop α with smoothings α_{-}, α_{+}at an intersection. Show that they are dense in ML.)

Quest: study the structure constants for multiplication

Question: What are the structure constants $C_{\mu \nu}^{\xi}$ for multiplication ?

$$
\mathbb{C}[X(\Sigma)]=\bigoplus_{\mu \in \mathrm{MC}} \mathbb{C} \cdot t_{\mu} \quad t_{\mu} t_{\nu}=\sum_{\xi \in \mathrm{MC}} c_{\mu \nu}^{\xi} t_{\xi}
$$

The linear basis of MC is far from monomial: $i(\mu, \nu) \neq 0 \Longrightarrow t_{\mu} t_{\nu} \neq t_{\xi}$.
Example [FG00]: In the torus Σ_{1} with the bracelet basis

- Fundamental group $\pi=\langle a, b \mid[a, b]=1\rangle \simeq \mathbb{Z}^{2}$ is abelian.
- Characters \simeq representations $a \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$ and $b \mapsto\left(\begin{array}{cc}y & 0 \\ 0 & 1 / y\end{array}\right)$.
- Triangular change of basis from multicurves to bracelets

$$
T_{p, q}=\operatorname{Tr}\left(a^{p} b^{q}\right) \text { for } p \wedge q=1 \text { and } T_{n p, n q}=\operatorname{Tcheb}_{n}\left(T_{p, q}\right):
$$

$$
\mathbb{C}\left[X\left(\Sigma_{1}\right)\right]=\mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]^{\sigma}=\bigoplus_{\mathbb{Z}^{2} / \pm 1} \mathbb{C} \cdot T_{p, q}
$$

- Product to sum: $T_{p, q} \cdot T_{r, s}=T_{p+r, q+s}+T_{p-r, q-s}$

The Luo products are extremal multicurves

Definition [Luo10]: Luo product of multicurves

For $\mu, \nu \in \mathrm{MC}$, define $L_{\mu}(\nu)$ from $\mu \cup \nu$ by smoothing intersections with left turns as we travel along segments of μ which meet segments of ν.

Proposition [MS22]: Luo products are extremal multicurves of $t_{\mu} t_{\nu}$
For all $\mu, \nu \in \mathrm{MC}$ such that $i(\mu, \nu)>0$, the Luo products $L_{\mu}(\nu)$ and $L_{\nu}(\mu)$ are distinct, and both belong to $\Delta\left(t_{\mu} t_{\nu}\right)$, with coefficients $(-1)^{i(\mu, \nu)}$.

Quest: Structure constants of the Poisson algebra $\mathbb{C}[X(\Sigma)]$
Theorem [Gol86]: Poisson bracket on $\mathbb{C}[X(\Sigma)]$
The Atiyah-Bott Weil-Petersson Goldman symplectic structure on X defines a Poisson bracket on $\mathbb{C}[X(\Sigma)]$. For $\alpha, \beta \in \pi_{1}(S)$ it is given by

$$
\left\{t_{\alpha}, t_{\beta}\right\}=\sum_{p \in \alpha \cap \beta} \epsilon_{p}\left(t_{\alpha_{p} \beta_{p}}-t_{\alpha_{p} \beta_{p}^{-1}}\right)
$$

where the sum ranges over all intersection points p between transverse representatives for $\alpha \cup \beta$ and ϵ_{p} is the sign of such an intersection, while α_{p}, β_{p} denote the homotopy classes of α, β based at p.

$$
\begin{equation*}
\left\{t_{\alpha}, t_{\beta}\right\}=\sum_{\xi} w_{\xi} t_{\xi}=\sum_{\xi}\left(\sum_{\sigma_{\xi}} \prod_{p} \sigma_{\xi}(p)\right) t_{\xi} \tag{PB-state-sum}
\end{equation*}
$$

where $w_{\xi}=\sum_{\sigma_{\xi}} \prod_{p} \sigma_{\xi}(p)$ is the sum over the smoothings $\sigma_{\xi}: \alpha \cap \beta \rightarrow\{ \pm 1\}$ of $\alpha \cup \beta$ yielding the multiloop ξ.

Newton set of the Poisson bracket

Corollary [MS22]: " $\Delta(\{f, g\}) \subset \Delta(f g)$ "

For $f, g \in \mathbb{C}[X]$, we have $v(\{f, g\}) \leq v(f g)$ for all $v \in M L$.
This property amounts to the inverse inclusion of the dual polytopes:

$$
\Delta^{*}(\{f, g\}) \supset \Delta^{*}(f g)
$$

Hence the Goldman Poisson bracket induces a residual Poisson bracket at any strict valuation v. (This endows T_{v} ML with a symplectic structure...)

Proof: Apply unitarity of $t_{\alpha} t_{\beta}$ and (PB-state-sum) formula for $\left\{t_{\alpha}, t_{\beta}\right\}$.
Corollary [MS22]: Luo products are extremal multicurves of $\left\{t_{\mu}, t_{\nu}\right\}$
For all $\mu, \nu \in \mathrm{MC}$ such that $i(\mu, \nu)>0$, the Luo products $L_{\mu}(\nu)$ and $L_{\nu}(\mu)$ are distinct, and both belong to $\Delta\left(\left\{t_{\mu}, t_{\nu}\right\}\right)$, with coefficients $\pm i(\mu, \nu)$.

Proof: The (PB-state-sum) formula implies $L_{\mu}(\nu), L_{\nu}(\mu) \in \Delta\left(\left\{t_{\mu}, t_{\nu}\right\}\right)$.

Poisson algebra structure on $\mathbb{C}\left[X\left(\Sigma_{0}^{4}\right)\right]$

Example: Product and Poisson bracket of $\alpha, \beta \subset \Sigma_{0}^{4}$ with $i(\alpha, \beta)=2$

The Luo product are $L_{\alpha}(\beta)=\delta$ and $L_{\beta}(\alpha)=\gamma$ and

$$
\begin{array}{rr}
t_{\alpha} t_{\beta}=t_{c_{1}} t_{c_{3}}+t_{c_{2}} t_{c_{4}}-t_{\gamma}-t_{\delta} & \left\{t_{\alpha}, t_{\beta}\right\}=2 t_{\delta}-2 t_{\gamma} \\
\Delta\left(t_{\alpha} t_{\beta}\right)=\left\{c_{1} \cup c_{3}, c_{2} \cup c_{4}, \gamma, \delta\right\} & \Delta\left(\left\{t_{\alpha}, t_{\beta}\right\}\right)=\{\gamma, \delta\}
\end{array}
$$

The Newton set of $t_{\alpha} t_{\beta}$ decomposes ML into 4 domains where $i(\lambda, \alpha \cup \beta)$ equals the intersection of λ with $c_{1} \cup c_{3}$ or $c_{2} \cup c_{4}$ or γ or δ respectively. In the interior of these domains $\left\{t_{\alpha}, t_{\beta}\right\}$ has residual values $0,0,-2,2$.

Bibliography

C. De Concini and C. Procesi.

The invariant theory of matrices, volume 69.
AMS, 2017.
C. Frohman and R. Gelca.

Skein modules and the noncommutative torus.
Trans. AMS, 352:4877-4888, 2000.
W. Goldman.

Invariant functions on Lie groups and Hamiltonian flows of surface group representations.
Inventiones Mathematicae, 85(2):263-302, 1986.
F. Luo.

Simple loops on surfaces and their intersection numbers.
J. Differential Geometry, 85:73-115, 2010.

Julien Marché and Christopher-Lloyd Simon.
Automorphisms of character varieties.
Annales Henri Lebesgue, 4:591-603, 2021.
J. Marché and C.-L. Simon.

Valuations on the character variety: Newton polytopes and Residual Poisson Bracket, 2022.
To appear in Geometry \& Topology.
J. Przytycki and A. Sikora.

On skein algebras and $\mathrm{SL}_{\mathbf{2}}(\mathbb{C})$-character varieties.
Topology, 39(1):115-148, 2000.

Thank you for your attention and feel free to ask (m)any questions !

Teichmüller space embeds in real locus of character variety

(1) The Teichmüller space of Σ is the space of complex structures on Σ.
(2) By the uniformisation theorem, every complex structure on Σ is conformal to a unique hyperbolic structure.
(0) A hyperbolic structure on Σ is uniquely determined by its holonomy representation $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{PSL}_{2}(\mathbb{R})$, well defined up to conjugacy.

- These correspond to the Fuchsian representations, or by Milnor-Wood inequalities to those with extremal euler class $\pm \chi= \pm(2-2 g)$.
(0) If $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{PSL}_{2}(\mathbb{R})$ has even euler class then it lifts to $\mathrm{SL}_{2}(\mathbb{R})$, so there are $2 \times 2^{2 g}$ copies of Teichmüller space in $X(\Sigma)$.
- Teichmüller space of Σ is Zariski dense in the character variety $X(\Sigma)$ (as Fuchsian representations form open subset of $\operatorname{Hom}\left(\pi, \mathrm{SL}_{2}(\mathbb{R})\right.$), which quotient to open subset of $X\left(\pi, \mathrm{SL}_{2}(\mathbb{R})\right)$.)
© Trace function of loop \leftrightarrow length of the unique geodesic:

$$
t_{\alpha}([\rho])=2 \cosh \left(I_{\alpha}(m) / 2\right)
$$

Most simple valuations are strict

Thurston-Masur volume on the space ML
The topological space ML admits (a PL-structure of $\operatorname{dim} 6 g-6$ and) a unique $\operatorname{Mod}(\Sigma)$-invariant Borelian measure up to scaling.

Defined on open subsets $U \subset M L$ by: $\quad \operatorname{Vol}(U)=\lim _{r \rightarrow \infty} \frac{\operatorname{Card}(r \cdot U \cap M C)}{r^{6 g-6}}$
Definition [MS21]: Strict valuations (implies simple and positive)
A valuation $v: \mathbb{C}[X(\Sigma)] \rightarrow\{-\infty\} \cup \mathbb{R}_{+}$is strict when for all $\mu, \nu \in \mathrm{MC}$:

$$
\mu \neq \nu \Longrightarrow v\left(t_{\mu}\right) \neq v\left(t_{\nu}\right)
$$

This implies in particular that it is simple, and that $v\left(t_{\mu}\right)>0$ for all $\mu \neq \emptyset$.
Proposition [MS21]: Most simple valuations are strict.
The set of strict valuations has full measure in ML.

Residual value of a function at a strict valuation
Extend $v \in$ ML to $v: \mathbb{C}(X) \rightarrow\{-\infty\} \cup \mathbb{R}$ by $v(f / g)=v(f)-v(g)$.

- Group of values $\Lambda_{v}=v(\mathbb{C}(X))$, and rational rank $\operatorname{dim} \mathbb{Q} \otimes \Lambda_{v}$.
- The transcendence degree of its residue field $k_{v}=\mathcal{O}_{v} / \mathcal{M}_{v}$.

Abhyankar inequality: rat. $\operatorname{rk}(v)+\operatorname{tr} \cdot \operatorname{deg}\left(k_{v}\right) \leq \operatorname{dim}(X)=6 g-6$

Proposition [MS22]: strict \Longleftrightarrow tr. $\mathrm{deg}=0 \Longleftrightarrow$ rat. $\mathrm{rk}=6 \mathrm{~g}-6$ For a simple valuation $v \in M L$ the following properties are equivalent:

$$
\begin{aligned}
& \text { strict, that is } \forall \mu, \nu \in \mathrm{MC}: \mu \neq \nu \Longrightarrow v\left(t_{\mu}\right) \neq v\left(t_{\nu}\right) \\
& \text { minimal transcendence degree: } \operatorname{tr} \cdot \operatorname{deg}\left(k_{v}\right)=0 \text {, or } k_{v}=\mathbb{C} . \\
& \text { maximal rational rank: rat. } \operatorname{rk}(v)=6 g-6=\operatorname{dim}(X)=\operatorname{dim}(\mathrm{ML}) .
\end{aligned}
$$

Definition: residual value at a strict valuation $v \in M L$ of $f \in \mathcal{O}_{v}$ The residual value $f_{v} \in \mathbb{C}$ is defined as $\left(f \bmod \mathcal{M}_{v}\right) \in k_{v}$. It equals the coefficient m_{μ} of t_{μ} for $\mu \in \Delta(f)$ such that $v(f)=v\left(t_{\mu}\right)$.

Mirzakhani asymptotics as volumes of Newton Polytopes*

Topological interpretation of $\operatorname{Vol} \Delta^{*}\left(t_{\alpha}\right)$.

For a multiloop α, can we give a topological interpretation for the Thurston-Masur volume $\operatorname{Vol} \Delta^{*}\left(t_{\alpha}\right)$? It vanishes unless α is filling, meaning it intersects every simple curve, in which case for every other filling multiloop β we have:

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Card}\{\varphi \in \operatorname{Mod}(S) \mid i(\lambda, \varphi(\alpha)) \leq r\}}{r^{6 g-6}}=\frac{\operatorname{Vol} \Delta^{*}\left(t_{\beta}\right) \operatorname{Vol} \Delta^{*}\left(t_{\alpha}\right)}{m_{g}}
$$

Computation in terms of elementary cones in ML indexed by $\Delta(f)$ Identification between measured laminations and simple valuations implies

$$
\forall f \in \mathbb{C}[X(\Sigma)]: \quad \Delta^{*}(f)=\bigcap_{\mu \in \operatorname{Supp}(f)} \Delta^{*}\left(t_{\mu}\right)=\bigcap_{\mu \in \Delta(f)} \Delta^{*}\left(t_{\mu}\right)
$$

The $\Delta^{*}\left(t_{\mu}\right)$ are described by explicit sets of linear inequalities in any PL chart of ML, and the volume of their intersection is computable.

