Quasi-characters of the modular group from linking numbers of modular knots

Christopher-Lloyd SIMON

The Pennsylvania State University

Monodromy and its applications Princeton, 2023-12-07

Modular group $\mathrm{PSL}_{2}(\mathbb{Z})$ acting on the hyperbolic plane $\mathbb{H} \mathbb{P}$

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \quad R=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0
\end{array}\right) \quad L=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Tiling $\mathbb{H} \mathbb{P}$ under the action of the modular group $\mathrm{PSL}_{2}(\mathbb{Z})=\mathbb{Z} / 2 * \mathbb{Z} / 3$

Loops in the modular orbifold $\mathbb{M}=\mathrm{PSL}_{2}(\mathbb{Z}) \backslash \mathbb{H} \mathbb{P}$

Free homotopy classes of oriented loops in \mathbb{M}	Conjugacy classes in $\pi_{1}(\mathbb{M})=\operatorname{PSL}_{2}(\mathbb{Z})$
Around conic singularity i or j	Elliptic: S or $T^{ \pm 1}$
Suround n times the cusp ∞	Parabolic: $R^{n}, n \in \mathbb{Z}$
$\exists!$ geodesic representative	Hyperbolic:
γ_{A} of length λ_{A}	$\operatorname{disc}(A)=\left(2 \sinh \frac{\lambda_{A}}{2}\right)^{2}$

Unit tangent bundle \mathbb{U} of the modular orbifold \mathbb{M}

Primitive modular geodesics in \mathbb{M} lift to modular knots in \mathbb{U}

Indefinite classes in $B Q F(\mathbb{Z})$	Hyperbolic classes in $\mathrm{PSL}_{2}(\mathbb{Z})$	Modular geodesics in \mathbb{M}	Periodic orbits in \mathbb{U}
discriminant form	trace form	intersection form	linking form

The primitive modular geodesic γ_{A} lift to the modular knot k_{A}

Conjugacy classes and cyclic binary words

Euclidean monoid

The monoid $\mathrm{PSL}_{2}(\mathbb{N})$ is freely generated by $L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
Conjugacy class $[A]$ of an infinite order $A \in \mathrm{PSL}_{2}(\mathbb{Z})$:

- $[A] \cap \operatorname{PSL}_{2}(\mathbb{N})$: cyclic permutations of an $L \& R$-word $\neq \emptyset$.
- Class is primitive \Longleftrightarrow cyclic word is primitive.
- Class is hyperbolic $\Longleftrightarrow \# L>0$ and $\# R>0$.

Rademacher cocycle of $A \in \operatorname{PSL}_{2}(\mathbb{N})$ is $\operatorname{Rad}(A)=\# R-\# L$

- Cocycle for the Eisenstein series E_{2} (logarithm of Dedekind function η)
- Signature defect of the torus bundle with monodromy A
- Special value at 0 of the Shimizu L-function for $L_{A}(s)=\sum \frac{\operatorname{sign} Q_{A}(m, n)}{\left|Q_{A}(m, n)\right|^{s}}$

Linking the trefoil recovers the Rademacher cocycle

Theorem [Ghy07]:
For hyperbolic $A \in \operatorname{PSL}_{2}(\mathbb{Z})$ we have $\operatorname{Rad}(A)=\operatorname{lk}\left(\right.$ trefoil, $\left.k_{A}\right)$.
The function Rad: $\mathrm{PSL}_{2}(\mathbb{Z}) \rightarrow \mathbb{Z}$ is a homogeneous quasi-morphism...

What about the linking of modular knots ?

Quasimorphisms and quasicharacters of a group 「
Quasimorphism and homogeneous quasimorphisms
A function $\phi: \Gamma \rightarrow \mathbb{R}$ is a quasimorphism when it has a bounded derivative:

$$
d \phi: \Gamma \times \Gamma \rightarrow \mathbb{R} \quad d \phi(A, B)=\phi(B)-\phi(A B)+\phi(A)
$$

It is homogeneous when $\phi\left(A^{n}\right)=n \phi(A)$ for all $A \in \Gamma$ and $n \in \mathbb{Z}$.

Quasi-characters

The \mathbb{R}-vector space $Q M H(\Gamma)$ has weak* topology (pointwize convergence).

- Semi-norm $\|d \phi\|_{\infty}$ with ker $\|d \phi\|_{\infty}=H^{1}(\Gamma ; \mathbb{R}) \subset Q M H(\Gamma)$
- Banach space of quasicharacters $\mathcal{Q C}(\Gamma)=Q M H(\Gamma) / H^{1}(\Gamma)$

For a topological \mathbb{R}-vector space V, a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a basis when

$$
\forall v \in V, \quad \exists!\left(c_{n}(v)\right) \in \mathbb{R}^{\mathbb{N}}, \quad v=\sum c_{n}(v) \cdot x_{n},
$$

and a Schauder basis when the coefficient functionals c_{n} are continuous.

Shauder basis of $\mathcal{Q C}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$ from linking numbers
Proposition [Sim22]: Quasi-morphisms from linking numbers
For all $A \in \mathrm{PSL}_{2}(\mathbb{Z})$, let $\mathrm{C}_{A}(B)=\frac{1}{2}\left(\operatorname{lk}(A, B)-\operatorname{lk}\left(A^{-1}, B\right)\right)$.
The function $C_{A}: \operatorname{PSL}_{2}(\mathbb{Z}) \rightarrow \mathbb{Z}$ is a homogeneous quasi-morphism.
It is trivial if and only if A is conjugate to A^{-1}.

The set \mathcal{P} of primitive infinite order conjugacy classes in $\mathrm{PSL}_{2}(\mathbb{Z})$, subset \mathcal{P}_{0} of those which are stable under inversion.
Partition $\mathcal{P} \backslash \mathcal{P}_{0}=\mathcal{P}_{-} \sqcup \mathcal{P}_{+}$in two subsets in bijection by inversion.
We may choose $R \in \mathcal{P}_{+}$, and note that $\mathrm{C}_{R}=\mathrm{lk}($ trefoil, $\cdot)$.
Theorem [Sim22]: Shauder basis for $\mathcal{Q C}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$
The collection of $C_{A} \in \mathcal{Q C}(\Gamma ; \mathbb{R})$ for $A \in \mathcal{P}_{+}$is a Shauder basis:

- $\forall f \in \mathcal{Q C}\left(\operatorname{PSL}_{2}(\mathbb{Z}) ; \mathbb{R}\right), \quad \exists!\left(c_{A}(f)\right)_{A} \in \mathbb{R}^{\mathcal{P}_{+}}, \quad f=\sum_{A} c_{A}(f) \cdot C_{A}$
- The period coefficients $c_{A}: f \mapsto c_{A}(f)$ are continuous
\Longrightarrow Fourier theory of quasi-characters, with a natural basis of cosigns.

Link equivalence

To prove the non-triviality and linear independance of the C_{A} for $A \in \mathcal{P}_{+}$, we were led to show the non-degeneracy of the linking form.

Lemma [Sim22]: The linking pairing is non-degenerate
If hyperbolic $A, B \in \mathrm{PSL}_{2}(\mathbb{Z})$ are link equivalent, then they are conjugate. (Link equivalence: $\forall X \in \operatorname{PSL}_{2}(\mathbb{Z}), \operatorname{lk}(A, X)=\operatorname{lk}(B, X)$.)

Linking recovers intersection

For hyperbolic $A, B \in \mathrm{PSL}_{2}(\mathbb{Z})$ we have $\frac{1}{2} I(A, B)=\operatorname{lk}(A, B)+\operatorname{lk}\left(A^{-1}, B\right)$.

Intersection from modular cocycles
For hyperbolic $A \in \mathrm{PSL}_{2}(\mathbb{Z})$, [DIT17] construct a modular function whose symbol recovers $I(A, \cdot)=2\left(\operatorname{lk}(A, \cdot)+\operatorname{lk}\left(A^{-1}, \cdot\right)\right)$. What about the cosign $\mathrm{C}_{A}(\cdot)=\operatorname{lk}(A, \cdot)-\operatorname{lk}\left(A^{-1}, \cdot\right)$?

Bibliography

W. Duke, Ö. Imamoḡlu, and Á. Tóth.

Modular cocycles and linking numbers.
Duke Math. J., 166(6):1179-1210, 2017.
Étienne Ghys.
Knots and dynamics.
In International Congress of Mathematicians. Vol. I, pages 247-277. Eur. Math. Soc., Zürich, 2007.
Christopher-Lloyd Simon.
Linking numbers of modular knots, 2022.
Submitted for publication, arxiv.

Happy 80 'th monodromy around the sun to Nicolas Katz !

Do you think you are exactly the same person you were half your lifetime ago? If not, it is almost certainly because you are aware, at some level, of your personal monodromy.
(There is a unique geodesic of discriminant 80, namely $R^{16} L^{1}$.)

