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The SL2(C)-character variety of a finitely generated group π

Definition: Character variety X (π) of a finitely generated group π

Representation variety Hom(π,SL2(C)), it admits
an algebraic action SL2(C) by conjugacy at the target.
Character variety X (π) = Hom(π,SL2(C))//SL2(C) is
the algebraic quotient = Spec(Invariant Functions)
For α ∈ π, invariant function: tα : ρ 7→ Tr(ρ(α))

Theorem [CP17]: Presentation of the algebra C[X (π)] of characters
The algebra C[X (π)] of invariant functions has

generators the tα : [ρ] 7→ Tr(ρ(α)) for α ∈ π

ideal of relations generated by t1 − 2 and tαtβ − tαβ − tαβ−1



For π fundamental group of a closed oriented surface Σ

Multiloop ∪γi with k self-intersections, apply trace relations to decompose:

(−tα) (−tβ)+(−tαβ)+
(
−tαβ−1

)
= 0 ∏

loops

(−tγi ) = (−1)k
∑

2k states

∏
circles

(−tµj )

Theorem [PS00]: Linear basis for the algebra C[X (Σ)]

Multicurve µ ⊂ Σ: disjoint union of simples curves µj and tµ =
∏

tµj .
The tµ for µ ∈ MC form a linear basis of the algebra C[X (Σ)].



Question: what does the decomposition of tγ look like ?

Example (Tchebychev): inside an immersed annulus Σ2
0

Fundamental group π = Z is free on one generator α

C[X (Σ2
0)] = C[x ]

Tr(αn) = 2Tn(x/2) Tchecbychev polynomial of the first kind.

Example (Fricke): inside an embedded three holed sphere Σ3
0

Fundamental group π = ⟨a, b, c | abc = 1⟩ is free on two generators,

C[X (Σ3
0)] = C[ta, tb, tc ] = C[x , y , z ]

Diagram computation: Tr([a, b]) = x2 + y2 + z2 − xyz − 2

Theorem [MS24]: Trace functions of multiloops are unitary
For all αj ∈ π1(Σ), the polynomial

∏
tαj ∈

⊕
MC Z · tµ is unitary.



Valuations and simple valuations
Strategy to study decomposition of functions in the linear basis

Define “monomial” valuations with respect to the linear basis MC
Define the Newton set of f as the “extremal points” in its support

Definition [MS21]: Valuations on C[X (Σ)] centred at infinity
A valuation is v : C[X ]→ {−∞} ∪ R+ satisfying for all f , g :

v(f ) = −∞ ⇐⇒ f = 0
v(fg) = v(f ) + v(g)

v(f + g) ≤ max{v(f ), v(g)}
Weak topology: pointwize convergence of the v(f ) for f ∈ C[X ].

Definition [MS21]: Simple valuation (“monomial” w.r.t. linear basis)
A valuation v : C[X (Σ)]→ {−∞}∪R+ is simple when for all f =

∑
mµtµ:

v(f ) = max{v(tµ) | mµ ̸= 0}



Simple valuations are measured laminations

Theorem [MS21]: Simple valuations are the completion of QMC
For λ ∈ MC, there exists a unique simple valuation vλ such that

∀α ∈ π1(Σ): vλ(tα) = i(λ, α)

The set of simple valuations ML is equal to the completion of QMC.

→ Well defined by D. Thurston intersection formula:

i(λ, α) =
∨
µ

∑
µj

i(λ, µj) = max{i(λ, µ) | statesµ} = vλ(tα)

= max and

Morphism v(fg) = v(f ) + v(g) deduced from integrality of⊕
n∈N Fn/Fn−1 where Fn = Span{tα | α ∈ π1(Σ), i(λ, α) ≤ n}.

← Bass-Serre tree of SL2(C(X ), v), Morgan-Otal Skora domination



Most simple valuations are strict

Thurston-Masur volume on the space ML
The topological space ML admits (a PL-structure of dim 6g − 6 and) a
unique Mod(Σ)-invariant Borelian measure up to scaling.

Defined on open subsets U ⊂ ML by : Vol(U) = lim
r→∞

Card(r · U ∩MC)

r6g−6

Definition [MS21]: Strict valuations (implies simple and positive)
A valuation v : C[X (Σ)]→ {−∞} ∪ R+ is strict when for all µ, ν ∈ MC:

µ ̸= ν =⇒ v(tµ) ̸= v(tν)

This implies in particular that it is simple, and that v(tµ) > 0 for all µ ̸= ∅.

Proposition [MS21]: Most simple valuations are strict.
The set of strict valuations has full measure in ML.



Newton set of a function

Definitions: Support, Extremal multicurve, Newton Set
The support of f =

∑
mµtµ ∈ C[X (Σ)] is Supp(f ) = {µ ∈ MC,mµ ̸= 0}.

A multicurve µ ∈ Supp(f ) is extremal in f if there exists a multicurve
λ such that i(λ, µ) > i(λ, ν) for all ν ∈ Supp(f ) distinct from µ.
Equivalently, there exists a strict v ∈ ML such that v(tµ) = v(f ).
The Newton set ∆(f ) of f is the set of extremal multicurves in f .
The dual Newton polytope is ∆∗(f ) = {v ∈ ML | v(f ) ≤ 1}.

Theorem [MS24]: Trace functions of multiloops are unitary
For all αj ∈ π1(Σ), the polynomial f =

∏
tαj ∈ C[X (Σ)] is unitary:

∀µ ∈ ∆(f ) : mµ = ±1

(Proof: Show that for a strict valuation v and multiloop α with smoothings
α−, α+ at an intersection we have v(tα−) ̸= v(tα+).)



Residual value of a function at a strict valuation

Extend v ∈ ML to v : C(X )→ {−∞} ∪ R by v(f /g) = v(f )− v(g).
Group of values Λv = v(C(X )), and rational rank dimQ⊗ Λv .
The transcendence degree of its residue field kv = Ov/Mv .

Abhyankar inequality: rat. rk(v) + tr. deg(kv ) ≤ dim(X ) = 6g − 6

Proposition [MS24]: strict ⇐⇒ tr. deg = 0 ⇐⇒ rat. rk = 6g − 6
For a simple valuation v ∈ ML the following properties are equivalent:

strict, that is ∀µ, ν ∈ MC : µ ̸= ν =⇒ v(tµ) ̸= v(tν)

minimal transcendence degree: tr. deg(kv ) = 0, or kv = C.
maximal rational rank: rat. rk(v) = 6g − 6 = dim(X ) = dim(ML).

Definition: residual value at a strict valuation v ∈ ML of f ∈ Ov

The residual value fv ∈ C is defined as (f modMv ) ∈ kv .
It equals the coefficient mµ of tµ for µ ∈ ∆(f ) such that v(f ) = v(tµ).



Quest: study the structure constants for multiplication

The linear basis of MC is not monomial: i(µ, ν) ̸= 0 =⇒ tµtν ̸= tξ.
What are the structure constants cξµν for multiplication ?

C[X (Σ)] =
⊕

µ∈MC

C · tµ tµtν =
∑
ξ∈MC

cξµνtξ

Example [FG00]: In the torus Σ1 with the bracelet basis

Fundamental group π = ⟨a, b | [a, b] = 1⟩ ≃ Z2 is abelian.

Characters ≃ representations a 7→
(

x 0
0 1/x

)
and b 7→

(
y 0
0 1/y

)
.

Triangular change of basis from multicurves to bracelets
Tp,q = Tr(apbq) for p ∧ q = 1 and Tnp,nq = Tchebn(Tp,q):

C[X (Σ1)] = C
[
x±1, y±1]σ =

⊕
Z2/±1

C · Tp,q

Product to sum: Tp,q · Tr ,s = Tp+r ,q+s + Tp−r ,q−s



The Luo products are extremal multicurves

Definition [Luo10]: Luo product of multicurves
For µ, ν ∈ MC, define Lµ(ν) from µ ∪ ν by smoothing intersections with
left turns as we travel along segments of µ which meet segments of ν.

µ ∪ ν Lµ(ν) Lν(µ)

Proposition [MS24]: Luo products are extremal multicurves of tµtν
For all µ, ν ∈ MC such that i(µ, ν) > 0, the Luo products Lµ(ν) and Lν(µ)
are distinct, and both belong to ∆(tµtν), with coefficients (−1)i(µ,ν).



Poisson algebra structure on C[X (Σ)]

Theorem [Gol86]: Poisson bracket on C[X (Σ)]

The Atiyah-Bott-Weil-Petersson-Goldman symplectic structure on X
defines a Poisson bracket on C[X (Σ)]. For α, β ∈ π1(S) it is given by

{tα, tβ} =
∑

p∈α∩β
ϵp

(
tαpβp − tαpβ

−1
p

)
where the sum ranges over all intersection points p between transverse
representatives for α ∪ β and ϵp is the sign of such an intersection, while
αp, βp denote the homotopy classes of α, β based at p.

{tα, tβ} =
∑
ξ

wξtξ =
∑
ξ

∑
σξ

∏
p

σξ(p)

 tξ (PB-state-sum)

where wξ =
∑

σξ

∏
p σξ(p) is the sum over the smoothings

σξ : α ∩ β → {±1} of α ∪ β yielding the multiloop ξ.



Newton set of the Poisson bracket

Corollary [MS24]: “∆({f , g}) ⊂ ∆(fg)”
For f , g ∈ C[X ], we have v({f , g}) ≤ v(fg) for all v ∈ ML.
This property amounts to the inverse inclusion of the dual polytopes:

∆∗({f , g}) ⊃ ∆∗(fg)

Hence the Goldman Poisson bracket induces a residual Poisson bracket at
any strict valuation v . (This endows TvML with a symplectic structure...)

Proof: Apply unitarity of tαtβ and (PB-state-sum) formula for {tα, tβ}.

Corollary [MS24]: Luo products are extremal multicurves of {tµ, tν}
For all µ, ν ∈ MC such that i(µ, ν) > 0, the Luo products Lµ(ν) and Lν(µ)
are distinct, and both belong to ∆({tµ, tν}), with coefficients ±i(µ, ν).

Proof: The (PB-state-sum) formula implies Lµ(ν), Lν(µ) ∈ ∆({tµ, tν}).



Poisson algebra structure on C[X (Σ4
0)]

Example: Product and Poisson bracket of α, β ⊂ Σ4
0 with i(α, β) = 2

c1 c2

c3c4

α

β γ δ

The Luo product are Lα(β) = δ and Lβ(α) = γ and

tαtβ = tc1tc3 + tc2tc4 − tγ − tδ {tα, tβ} = 2tδ − 2tγ
∆(tαtβ) = {c1 ∪ c3, c2 ∪ c4, γ, δ} ∆({tα, tβ}) = {γ, δ}

The Newton set of tαtβ decomposes ML into 4 domains where i(λ, α ∪ β)
equals the intersection of λ with c1 ∪ c3 or c2 ∪ c4 or γ or δ respectively.
In the interior of these domains {tα, tβ} has residual values 0, 0,−2, 2.



Mirzakhani asymptotics as volumes of Newton Polytopes*
Topological interpretation of Vol∆∗(tα).
For a multiloop α, can we give a topological interpretation for the
Thurston-Masur volume Vol∆∗(tα)?
It vanishes unless α is filling, meaning it intersects every simple curve, in
which case for every other filling multiloop β we have:

lim
r→∞

Card{φ ∈ Mod(S) | i(λ, φ(α)) ≤ r}
r6g−6 =

Vol∆∗(tβ) Vol∆
∗(tα)

mg

Computation in terms of elementary cones in ML indexed by ∆(f )

Identification between measured laminations and simple valuations implies

∀f ∈ C[X (Σ)] : ∆∗(f ) =
⋂

µ∈Supp(f )

∆∗(tµ) =
⋂

µ∈∆(f )

∆∗(tµ)

The ∆∗(tµ) are described by explicit sets of linear inequalities in any PL
chart of ML, and the volume of their intersection is computable.
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Thank you for your attention and feel free to ask (m)any questions !

https://ahl.centre-mersenne.org/articles/10.5802/ahl.82/


Teichmüller space embeds in real locus of character variety

1 The Teichmüller space of Σ is the space of complex structures on Σ.
2 By the uniformisation theorem, every complex structure on Σ is

conformal to a unique hyperbolic structure.
3 A hyperbolic structure on Σ is uniquely determined by its holonomy

representation ρ : π1(Σ)→ PSL2(R), well defined up to conjugacy.
4 These correspond to the Fuchsian representations, or by Milnor-Wood

inequalities to those with extremal euler class ±χ = ±(2− 2g).
5 If ρ : π1(Σ)→ PSL2(R) has even euler class then it lifts to SL2(R), so

there are 2× 22g copies of Teichmüller space in X (Σ).
6 Teichmüller space of Σ is Zariski dense in the character variety X (Σ)

(as Fuchsian representations form open subset of Hom(π,SL2(R)),
which quotient to open subset of X (π,SL2(R)).)

7 Trace function of loop ↔ length of the unique geodesic:

tα([ρ]) = 2 cosh(lα(m)/2)
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