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Complexity of topological invariants

Recent results on the computational complexity of link invariants:
bounding the crossing number of a knot or link is NP-hard
bounding the unknotting number of a knot or link is is NP-hard
bounding the genus of a knot in a general 3-manifold is NP-hard
bounding the genus of a knot in the sphere is in co-NP

computing a finite type invariant of degree d is in O(nd)

Gauss discovers linking numbers.



Everything is contained in plane loops

Arnol’d [Arn00] in the Preface to Lecture 1:
A method for studying infinite dimensional configuration space is to
compute the relative cohomology of their stratifications by singular loci.
This is how Vassiliev introduced finite type invariants of knots S1 ↪→ S3.
Arnol’d proposes an analogous study for immersions S1 ↬ S2, but...

The combinatorics of plane curves seems to be far more compli-
cated than that of knot theory (which might be considered as
a simplified “commutative” version of the combinatorics of plane
curves and which is probably embedded in plane curves theory).

Survey [Poé95] on extending immersions Sm ↬ Sn to Dm+1 ↬ Sn

Thom-Smale-Hirsch: solved using homotopy groups and obstruction theory
when m − n > 1. Note: homotopy groups are commutative in degrees > 1.



Why self-intersection and pinning sets of multiloops ?

A (whimsical) physical motivation: Neumann-Coto [NC01]

In a surface F, an immersion γ : ⊔s
1 S1 ↬ F is isotopic to a collection of

shortest geodesics for a complete Riemannian metric on F if and only if it is
taut (realizes the minimal number of double-points in its homotopy class).

Where do punctures come into the picture ?
For multiloops in the sphere, we will study the relation between
self-intersection numbers and punctures to define pinning numbers.
Applications to the bounded cohomology of braid groups and Homeo(S2).



Using multiloops as a computation scheme

Vaughan Jones: planar algebras
The algebra of tangles and multiloops in punctured spheres encapsulate
efficiently the essence (and complexity) of many computational schemes.
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Multiloops in punctured spheres

Disjoint union of circles ⊔s
1S1. Punctured sphere S2

P = S2 \ P .
A multiloop with s strands is a generic immersion γ : ⊔s

1 S1 ↬ S2
P up to

orientation preserving diffeomorphisms of source and the target.
Here generic means all multiple points are transverse double-points.
The number of double-points is denote by #γ .
The regions R are the connected components of S2 \ im(γ).
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The multiloop 102
16 has #γ = 8. Various sets of punctures.

https://christopherlloyd.github.io/LooPindex/multiloops/10%5E2_16.html


Multicurves, self-intersection, taut multiloops

A multicurve is a homotopy class of multiloops.
The self-intersection si(γ) of a multicurve is the minimal number of
double-points among its generic representatives.
A multiloop γ is taut when #γ = si(γ), namely when it has the minimal
number of double-points in its homotopy class.

If two multiloops in S2
P are homotopic, then they are related by a sequence

of isotopies and Reidemeister moves R1,R2,R3.



How to know when a multiloop is taut ?

Try combinations of R1,R2,R3 until finding γ′ with #γ′ < #γ...

Can we order and bound the sequences of Rk-moves ? We won’t insist...

Can we construct an algorithm computing si(γ) to compare with #γ ?



How to know when a multiloop is taut ?

Pinning sets
Which puncture sets P ⊂ R will yield a loop γ : S1 ↬ S2

P that is taut ?

The set P = R of all regions works. We can try deleting one pin at a time...



Pinning sets, pinning number, pinning ideal

Consider a multiloop γ : ⊔s
1 S1 ↬ S2 with regions R .

A subset of regions P ⊂ R is pinning when γP : ⊔s
1 S1 ↬ S2

P is taut.
The pinning sets of γ form its pinning ideal: a subposet PI ⊂ P(R)
absorbant under union and containing R .
The pinning number ϖ(γ) is the minimum cardinal of pinning sets.
A pinning set optimal if it has the minimum cardinal, in particular it must
be minimal (with respect to inclusion).

A a d

a

A a b c db c d

a b d

A a b c d d

A c

b c

6

5

7

8

4

9

10

A

abc

d

The multiloop 102
16 and its pinning semi-lattice obtained from unions of minimal

pinning sets (in red or green), together with the whole set R .

https://christopherlloyd.github.io/LooPindex/multiloops/10%5E2_16.html


Main questions:

Given a multiloop γ : ⊔s
1 S1 ↬ S2, how (efficiently) can we:

Construct minimal or optimal pinning sets?
Find which regions belong to every pinning set?
Compute the pinning number ϖ(γ)?

What can be the shape of the pinning ideal of a (multi)loop?
What are its statistics for certain random models?
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The loop 91
5 has 2 optimal pinning sets, and 3 other minimal pinning sets.

https://christopherlloyd.github.io/LooPindex/multiloops/9%5E1_5.html


Overview of our main complexity results

Computing si and check optimal solutions in P-steps
We construct a polynomial algorithm which given a multiloop
γ : ⊔s

1 S1 ↬ S2
P computes its self intersection-number si(γ).

Thus in P-steps we can: check if a given set P ⊂ R is pinning, if so minimal
and optimal; and we can find a minimal pinning set.
We implemented it to build an online catalog of pinning data for multiloops.

The Pinning number is NPC:
The following LooPiNum decision problem is NPC:
Input: A loop γ : S1 ↬ S2 and an integer k ∈ N.
Output: Is ϖ(γ) ≤ k ?

Proof: we will construct two reductions:
NP-easy: reduction from LooPiNum to hypergraph-vertex-cover.
NP-hard: reduction from graph-vertex-cover to LooPiNum.

https://christopherlloyd.github.io/LooPindex/
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Singular monorbigons
Singular monorbigons of a loop γ : S ↬ S2

P :

A singular monogon is a non-trivial closed interval I ⊂ S1 such that
γ(∂I ) = {x} and γ(I ) ⊂ S2

P is null-homotopic.
A singular bigon is a disjoint union of non-trivial closed intervals I ⊔ J ⊂ S1

such that γ(∂I ) = {x , y} = γ(∂J) and γ(I ⊔ J) ⊂ S2
P is null-homotopic.

It is embedded when γ is injective on the interior of K = I or K = I ⊔ J.
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Singular monorbigons

Singular monorbigons of a loop γ : S ↬ S2
P :

A singular monogon is a non-trivial closed interval I ⊂ S1 such that
γ(∂I ) = {x} and γ(I ) ⊂ S2

P is null-homotopic.
A singular bigon is a disjoint union of non-trivial closed intervals I ⊔ J ⊂ S1

such that γ(∂I ) = {x , y} = γ(∂J) and γ(I ⊔ J) ⊂ S2
P is null-homotopic.

It is embedded when γ is injective on the interior of K = I or K = I ⊔ J.

A singular (embedded) bigon R3-moves into a non-singular (weak) bigon.



Hass-Scott characterise tautness with singular monorbigons

Hass-Scott [HS85, Theorems 2.7 and 4.7]
2.7: If #γ > 0 but si(γ) = 0, then γ has an embedded monorbigon.
4.2: If #γ > si(γ), then γ has a singular monorbigon.

Just for loops: no generalisation to multiloops
A multiloop γ : S1 ⊔ S1 ↬ S2 \ {p1, p2, p3} which is not taut,
but with no singular monorbigons (generalised to multiloop):



Winding numbers help to pin loops

Corollary: winding numbers yield sufficient conditions for pinning sets
Consider a loop γ : S1 ↬ S2 and a set of regions P ⊂ R . If P is not pinning
then there exists a singular monorbigon α of γ such that
for every pair of regions o,∞ ∈ P we have lk(α, [o]− [∞]) = 0.

The converse is false: the commutator loop in S2 \ {0, 1,∞}

Strategy
To characterise pinning sets of loops in terms of singular monorbigons and
linking numbers, we will restrict to the class of immersed monorbigons...
These will define the obvious collections of regions to pin: the mobidiscs.



Immersed monorbigons and the Mobidisc theorem
Definition: For a loop γ : S ↬ S2

P ,

A singular monorbigon K ⊂ S1 is immersed when there exists ι : D ↬ S2
P

such that the restriction γ : K ↬ S2
P factors through ι : ∂D ↬ S2

P .
A mobidisc consists of the regions in the image ι(D) of such an immersion.
Denote by MoB(γ) ⊂ P(R) the set of all mobidiscs.

The MoBiDisc Theorem [SS24]

For a loop γ : S1 ↬ S2 and a collection of regions P ⊂ R .
The loop γ : S1 ↬ S2

P is taut if and only if it has no immersed monorbigons.
Thus P ∈ P(R) is pinning if and only if it intersects every D ∈ MoB(γ).



Computing MoBiDiscs in polynomial time

Non-unique immersed discs but unique mobidisc
An immersed monorbigon may bound several non-isotopic immersed discs:

but they all define the same mobidisc: its regions are distinguished by
(p, q) ∈ R × R 7→ sign lk(γ(K ), [p]− [q]) ∈ {0,±1}.

Polynomial computation of the set of mobidiscs
Given a loop γ : S1 ↬ S2, relying on [Bla67, Fri10] and linking numbers, we
can compute MoB(γ) ⊂ P(R) time O(Card(R)4).
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Outline of the proof
Theorem [HS94]: curve shortening flow

If two loops in S2
P are homotopic, then they are related by a sequence of

isotopies and shortening Reidemeister moves R1,R2,R3.

Lemma: extending immersed monorbigons across R moves
Consider a loop β and a shortening-Reidemeister move to a loop α.
If α has an immersed monorbigon then β has an immersed monorbigon.

Proof: Chasing mobidiscs accross R3 moves by case analysis:
Easy cases: the move restricts to a regular isotopy of the monorbigon.
Medium cases : tweak local structure to find immersed monorbigon.
Hard cases: global constructions and arguments to find new mobidisc.



Proof of the Lemma

Configurations of type R3(0, j). Configurations of type R3(1, j).

Configurations of type R3(2, j).



Proof of the Lemma: hardest case

Last case: the singular bigon dissappears into a week bigon, so we must
construct another singular monorbigon which is immersed.

x2

y2
z2

y1

z1

x1

x2

y2

z2
y1

z1
x1

α β

u
vz1

z2

The move R3(2, 2)D leads to a weak bigon.



Proof of the Lemma: hardest case

Last case: the singular bigon dissappears into a week bigon, so we must
construct another singular monorbigon which is immersed.
Subcase analysis: the construction and proof use orientability of the sphere,
Theorems 2.7,& 4.2 of Hass-Scott, and more case analysis.
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Finding an immersed monorbigon in cases x and y .
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Experimentations: couter-examples and patterns

An online catalog: https://christopherlloyd.github.io/LooPindex/

We constructed a data basis of > 103 multiloops with their pinning data.
This enabled us to find counter-examples to various naïve conjectures:

- invariance under Reidemeister moves or mutations
- monotonicity properties of pinning numbers and their averages
- Some distinct loops have isomorphic pinning semi-lattices

but many patterns are to be understood...

https://christopherlloyd.github.io/LooPindex/


Experimentations: couter-examples and patterns

Multiloops with regions of degree > 2...



Experimentations: couter-examples and patterns

... have a rich pinning semi-lattice !



Further directions of research
Complexity of the pinning number on special instances

1 Find interesting classes of loops for which the LooPiNum problem is P.
(Add local or global restrictions of topological or geometrical nature.)

2 Generalise the MoBiDisc theorem to certain classes of multiloops.
(This requires extending some of the results by Hass-Scott.)

What do pinning quantities say about plane loops ?
1 Which are related to other invariants of plane loops ?

(Relations with Arnold’s cohomological invariants J−, J+, St ?)
2 How do they vary under Reidemeister moves ?

(Study the minimal pinning number over an R3-equivalence classes.)

Applications to bounded cohomology of braid groups and Homeo(S2)

For ϕ ∈ Homeo(S2): pinning numbers of multiloops ϕ(γ) ∪ γ can measure
"braiding index" or "distance" to Bp, translation length on curve graphs...
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