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Modular group PSL2pZq acting on the hyperbolic plane HP
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Tiling HP under the action of the modular group PSL2pZq “ Z{2 ˚ Z{3
by the (Farey) ideal triangulation together with its (Bass-Serre) dual tree.



Loops in the modular orbifold M “ PSL2pZqzHP

Free homotopy classes of Conjugacy classes in
oriented loops in M π1pMq “ PSL2pZq

Around conic singularity i or j Elliptic: S or T˘1

Suround n times the cusp 8 Parabolic: Rn, n P Z
D! geodesic representative Hyperbolic:

γA of length λA |TrpAq| “ 2 cosh
`1

2λA
˘

R

S

T

i

j



Conjugacy classes and cyclic binary words

Euclidean monoid
The monoid PSL2pNq is freely generated by L “ p 1 0

1 1 q and R “ p 1 1
0 1 q

T´1

T

S´1

S

R

L

Conjugacy class rAs of an infinite order A P PSL2pZq:
rAs X PSL2pNq : cyclic permutations of an L&R-word ‰ H.
Class is primitive ðñ cyclic word is primitive.
Class is hyperbolic ðñ #L ą 0 and #R ą 0.



Continued fractions and geodesics in M

Every γ P Rě1 has a unique Euclidean continued fraction expansion

t c0, c1, . . . u “ c0 ` 1
c1`... “ Rc0Lc1 ¨ ¨ ¨ ¨ p8q with cj P Ně1.

The sequence pcjq is finite if and only if γ is rational; otherwise, it is:
periodic ðñ γ is quadratic, and fixed by Rc0 . . . Lc2p´1 P PSL2pNq.
bounded ðñ γ is quadratic or transcendental ? (Conjecture [Sha92, §4].)

The axis of A “ Ra0 . . . La2n´1 Ă R ¨ PSL2pNq ¨ L is pα´, α`q Ă HP with

α` “ t a0, . . . , a2n´1 u ´ 1{α´ “ t a2n´1, . . . , a0 u

For all ´1{α´ “ t a´1, a´2, . . . u and α` “ t a0, a1, a2, . . . u in Rą1, the
geodesic pα´, α`q Ă HP intersects △ according to the sequence an.



Lagrange spectrum and heights of geodesics

The size of cn measures the depth of the nth excursion to the cusp:

Horoball tℑpzq ą hu Ă HP at height h ě 1
projects to Bphq Ă M with area 1{h.
The geodesic p0, γq P HP projected in M
penetrates Bphq each time n P N satisfies:

t 0, cn´1, . . . , c0 u ` t cn, cn`1, . . . u ě 2h. ℜpzq

ℑpzq ą 0

c0
2

0 c0 ` 1c0 γ

The Lagrange constant L pγq is the asymptotic height of p0, γq:
L pγq “ lim supnpt 0, cn´1, . . . , c0 u ` t cn, cn`1, . . . uq
L pγq “ suptL ě 0 : |α ´

p
q | ă 1

Lq2 for infinitely many p, q P Nu

What values can it take? Bounding size and pattern-complexity of pcjq

L pγq “ 0 ðñ γ P Q
For α R Q we have L pγq ě lim supn pt 0, 1, . . . , 1 u ` t 1, 1, . . . uq “

?
5

If L pγq ď 3 then pcjq is À 2 and has low complexity patterns...



Aparte: Deforming the representation PSL2pZq Ñ PSL2pRq

Faithful discrete ρq : PSL2pZq Ñ PSL2pRq modPSL2pRq-conjugacy
or complete hyperbolic metrics on M, are parametrized by q P R˚:

Lq “

´

q 0
1 q´1

¯

Rq “

´

q 1
0 q´1

¯

.

8

i j

The orbifold M “ M1 and its deformation Mq with q “ p2 sinh λ
2 q2

The universal representation ρq : PSL2pZq Ñ PSL2pZrq˘1sq is Burau
The fixed points of Aq “ ρqpAq are the q-deformed
quadratic numbers αq P Zpq, q´1qr

a

discpAqqs.
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The modular torus and its fundamental group

The abelianisation Z{2 ˚ Z{3 Ñ Z{2 ˆ Z{3 of the modular group
corresponds the Galois cover of M by a punctured torus M1.
A punctured torus with π1pM1q “ PSL2pZq1 “ ZX ˚ ZY where:
X “ rT´1,Ss “ LR “ p 1 1

1 2 q and Y “ rT , S´1s “ RL “ p 2 1
1 1 q
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Z{6

HP Γ1»F2
ÝÝÝÝÑ M1 Γ{Γ1»Z{6

ÝÝÝÝÝÝÑ M



The universal abelian cover of the modular torus

Hurwicz : π1pM1q Ñ H1pM1;Zq = Abel : ZX ˚ ZY Ñ ZX ‘ ZY

corresponds to a Galois cover of M1 by a lattice-punctured-plane M2.
The Jacobi integration map of M1 based at the cusp 8 P BM1 yields
an identification M2 Ñ H1pM1;RqzH1pM1;Zq
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HP Γ2»F8
ÝÝÝÝÑ M2 Γ2{Γ1»Z2

ÝÝÝÝÝÝÑ M1



The hexagonal group of isometries

The short exact sequence Γ1{Γ2 ↣ Γ{Γ2 ↠ Γ{Γ1 is split
The isometry group Γ{Γ2 “ pZX ‘ ZY q ¸ ppZ{2qDS

ˆ pZ{3qDT
q of M2

acts like the crystallographic group of the hexagonal lattice.

T´1

T

S´1

S

R

L

i
j´1 `1
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Action of Γ{Γ2 on the hexagonal graph H and cusps Γ2zΓ{xRy.



Action of MappM1q on loops and bases of π1pM1q

Loops, simple loops and bases
Loops in M1 = conjugacy classes of ZX ˚ ZY = cyclic words on X ,Y .
Simple loops in M1 = primitive vectors in H1pΓ1;Zq “ ZX ‘ ZY .
Bases of Γ1 “ ZX ˚ ZY correspond to bases of H1pΓ1;Zq “ ZX ‘ ZY ,
hence to pairs of simple loops in M1 with one intersection point
(their commutator in Γ1 yields the loop circling once around the cusp).

The mapping class group MappM1q “ OutpZX ˚ ZY q “ GLpZX ‘ ZY q

contains the positive mapping class group Map`pM1q “ SLpZX ‘ ZY q

(with index 2 and cokernel generated by pX ,Y q ÞÑ pY ,X q), which is
generated by the positive Dehn twists along the simple loops X and Y :

DX : pX ,Y q ÞÑ pX ,YX q DY : pX ,Y q ÞÑ pXY ,Y q

(whose relations are generated by the braid DYD
´1
X DY “ D´1

X DYD
´1
X ).

The substitution monoid SL2pNX ‘ NY q freely generated by DX ,DY acts
freely transitively on the set of oriented bases of the monoid NX ‘ NY .



Action of MappM1q on simple geodesics of M1

Which cyclic words on tX ,Y u correspond to simple loops in M1?

For a primitive vector pp, qq P Z2, determine the cyclic word in X&Y
associated to the unique simple geodesic of M1 homological to X pY q.
Act by DS ,DJ so that p ě q ě 0, expand p

q “ t c0, . . . , c2n`1 u.

As C “ Rc0 . . . Lc2n`1 sends 1
0 ,

0
1 to the last convergents p

q ,
p1

q1 :
let DC “ Dc0

Y . . .Dck
X act by substitution on the basis pY ,X q

to find the cyclic words of the simple loops in that basis.

Simple geodesics in M1 from Sturmian sequences on tLR ,RLuZ

The simple loops of M1 are, up to Z{6-rotations, the projections of axes
pα´, α`q Ă HP with ´1{α´ “ t a´1, . . . u and α` “ t a0, . . . u in Rą1 such
that panq is a Sturmian sequence on t1, 2u.



Diophantine approximation of (simple) geodesics in M1

The Markov-Cohn constant of geodesic pα´, α`q Ă HP mod PSL2pZq

C pα´, α`q is the infimum of 2h ě 2 such that pα´, α`q intersects Bphq.
When ´1{α´ “ t a´1, a´2, . . . u and α` “ t a0, a1, a2, . . . u we have:

C pα´, α`q “ supnpt 0, an´1, an´2, . . . u ` t an, an`1, . . . uq.

Simple loops in M1 (Haas [Haa87] building on Cohn [Coh71])

For distinct α´, α` P RP1 not both rational, the following are equivalent:
The geodesic pα´, α`q Ă M1 is simple (and closed).
The sequence pajq is Sturmian on t1, 2u (and periodic).
The cusp height C pα´, α`q is P r

?
5, 3s (and ă 3).

For such simple pα´, α`q Ă M1 we have C pα´, α`q “ 3 coth
`1

2ℓM1pαq
˘

:
If C ă 3 then α˘ are conjugate quadratic roots of Markov forms.
If C “ 3 then α˘ are transcendental ([ADQZ01]).



Geometry of the unicity conjecture for the Markov spectrum

The trace relation for all A,B P SL2, denoting C˘ “ AB˘1

¸ TrpAqTrpBq “ TrpC`q ` TrpC´q by Cayley-Hamilton
Ä

TrrA,Bs “ TrpAq2 ` TrpBq2 ` TrpC˘q2 ´ TrpAqTrpBqTrpC˘q ´ 2
Holed tori = Fuchsian groups xA,By with TrrA,Bs ď ´2.

Bases of punctured hyperbolic tori yield solutions of Markov cubic
For a basis pα, βq of π1pM1q namely simple loops with ipα, βq “ 1, the
loop γ “ αβ “ Dβpαq yields bases pα, γq & pγ, βq and rα, βs “

Ä

.
The traces pa, b, cq of superbases pα, β, γq satisfy a2 ` b2 ` c2 “ abc .
DS ,DT P SL2pZX ‘ ZY q change pa, b, cq to pb, a, ab ´ cq, pc , b, aq

and the orbit of p3, 3, 3q yields all integral solutions to Markov cubic.

Markov conjectures unicity length/height spectrum simple loops M1

Simplicity of the q-variable spectrum is known.
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Generalizing to other arithmetic surfaces (ongoing work)

Conjecture: quadratic-transcendent dichotomy in arithmetic surfaces
In an arithmetic surface S “ ΓzHP consider a simple geodesic.
If it is not asymptotic to a cusp or to a closed geodesic
then any of its lifts in HP has ends in RP1 that are transcendent.

Strategy and philosophy of the proof
Topological simplicity leads (via MappSq symmetries or dynamics) to
low symbolic complexity leads (via Schmidt subspace dichotomy) to
arithmetic rigidity (deg ď 2 over invariant trace field or transcendent)



The example of congruence subgroups
Questions: the simple real quadratic numbers of level N

Which real quadratic numbers arise from end-lifts of
simple closed geodesics in the congruence cover Mn ?
The congruence subgroups Γpnq for n “ 3, 4, 5 yield the platonic
covers Mn “ CP1 minus regular tetrahedron, octahedron, icosahedron
and MappMn, BMnq “ BraidnpCP1q for n “ 3, 5, 11 “ dimH1pMn,Zq.

Stereographic projections of the platonic triangulations
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Values, limits and periods of the modular j : HP Ñ C
Unique Γ-modular holomorphic function j : HP Ñ C uniformizing M

jp8q “ 81 jpjq “ 0 jpiq “ 123

The quadratic transcendence dichotomy (Schneider [Sch49])
For τ P HP : jpτq is algebraic if and only if τ is complex quadratic.

Fundamental theorem in class field theory X complex multiplication
For quadratic τ P HP, the extension Qpτqpjpτqq{Qpτq is unramified abelian,
depending only on the order O of the lattice Zrτ s, with Galois group ClpOq.
This describes all unramified abelian extensions of complex quadratic fields.

Kronecker Jugendtraum : abelian extensions of real quadratic fields ?
Study limits of j at γ P RP1 and cycle integrals along α Ă M ?



Periods of Dedekind η4pzqdz or the Abel Jacobi map on M1

Primitive of the abelian differential and cusp compactification

Abelian du on M1 lifts on HP to Cη4pzqdz where C “ 210{3

33{4
π5{2

Γp1{3q3
.

η4p6τq “ q
ś8

1 p1 ´ q6nq4 “
ř

ψpnq exppi2πnτq is [LMF24, 32.2.a.a]
the unique normalised cusp eigenform for the group Γ0p36q.

The primitive hexppτq “
şτ

8
Cη4pzqdz “ 12C

iπ

ř8
1
ψpnq

n ¨ exp
`

iπ
12nτ

˘

yields hexp: HP Ñ CzΛ uniformizing H1pM1;RqzH1pM1;Zq “ M2.
Cusp compactification B hexpQP1 Ñ Λ “ H1pM1;Zq “ Γ1{Γ2.

Periods of the abelian differential
For coprime a, c P Z, there exists A “

`

a b
c d

˘

P Γ1: let A ” XmY n mod Γ2.
The limit of the improper integral and conditionally convergent series:

B hexpp ac q “

ż a
c

8

Cη4pzqdz “ 12C
iπ

8
ÿ

n“1

ψpnq

n ¨ exp
`

iπ
12

a
c n

˘

is B hexpp ac q “ |ω0|
`

m expp´ iπ
6 q ` n expp` iπ

6 q
˘

where |ω0| “ 2π1{2

31{4 .

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/36/2/a/a


The Radial compactification Shexp: R Ñ SH1pM1;Rq

We define the radial compactification Shexp: R Ñ R{2πZ
R “ the set of α P RzQ such that as τ P HP converges to α P BHP,
the argument arg hexppτq P R{p2πZq converges to Shexppαq, namely
the geodesic hexppi , αq Ă M2, following the L&R-cf-expansion of α,
escapes in a definite direction which defines Shexppαq P SH1pM1;Rq.

R L

R L2

R L

R L2

R

L

R

L2

Shexppαq recovers the slope of the parallel Sturmian sequences to α

Shexp: R Ñ R{2πZ restricts to continuous surjection S Ñ R{2πZ



Continued fraction expansion for hexppλq... and Shexppγq ?

The modular function λ : HP Ñ Czt0, 1,8u uniformizes the congruence
cover Mp2q of M associated to the congruence subgroup Γp2q of Γ.
The cover HP{Γp2q Ñ HP{Γ has solvable Galois group S3

so λ is an algebraic function of j, namely j “
27p1´λ`λ2q3

4λ2p1´λq2
.

Gauss continued fraction for consecutive hypergeometric ratios yields

With [KZ03] we find
şτ

8
η4pzqdz “ 3

i2π

`1
2λ

˘1{3
¨ 2F1p1{3, 2{3, 4{3;λpτqq so:

hexppτq “

ż τ

8

Cη4pzqdz “ 3C
i2π

`1
2λp1 ´ λq

˘1{3
¨

1
1 ´ n1λ

1´
n2λ
1´...

where for k P N: n2k`1 “
pk`1{3q

2p2k`1{3q
and for k P N˚: n2k “ k

2p2k`1{3q
.

A continued fraction expansion for tan ˝Shexp: R Ñ RP1 ?
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