

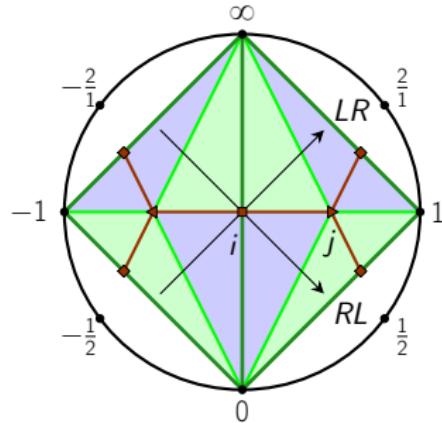
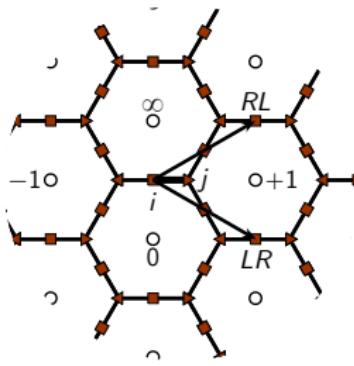
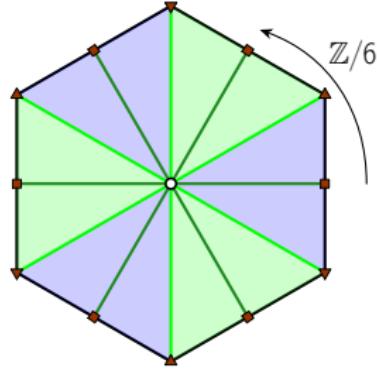
Transcendence of simple geodesics in arithmetic surfaces

Dynamics of modular groups and diophantine approximation

Christopher-Lloyd SIMON

Institut de Recherche Mathématique de Rennes

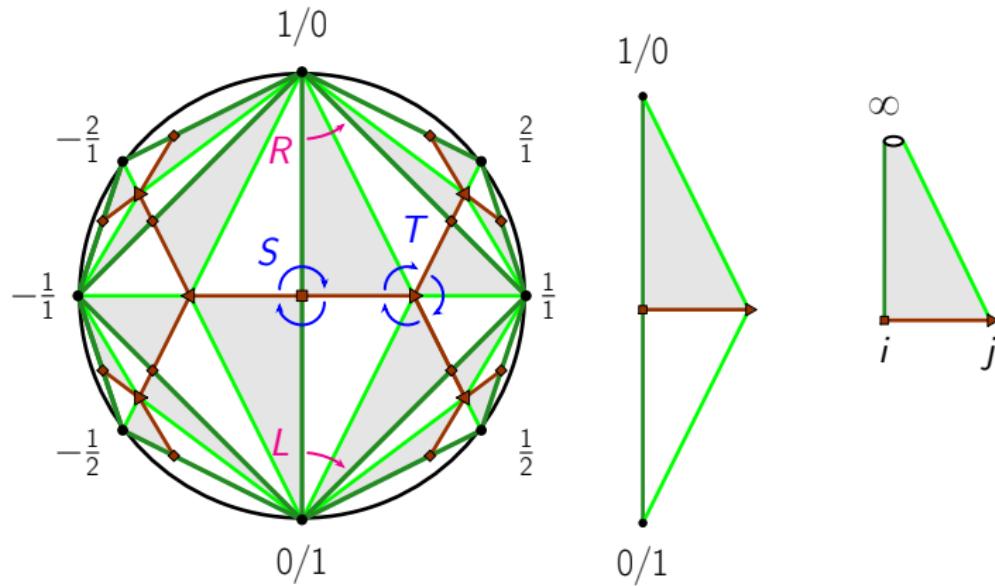
2026



- 1 The modular group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ and its orbifold $\mathbb{M} = \Gamma \backslash \mathbb{H}\mathbb{P}$
- 2 The modular torus $\mathbb{M}' = \Gamma' \backslash \mathbb{H}\mathbb{P}$ and its simple geodesics
- 3 Generalizing to other arithmetic surfaces
- 4 Periods of modular forms along simple geodesics

Modular group $PSL_2(\mathbb{Z})$ acting on the hyperbolic plane \mathbb{HP}

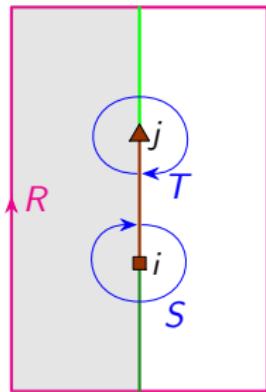
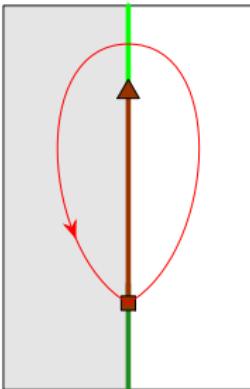
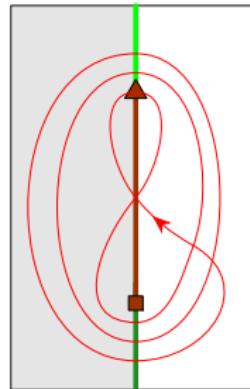
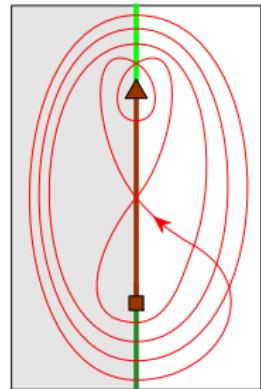
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad T = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \quad R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$



Tiling \mathbb{HP} under the action of the modular group $PSL_2(\mathbb{Z}) = \mathbb{Z}/2 * \mathbb{Z}/3$ by the (Farey) ideal triangulation together with its (Bass-Serre) dual tree.

Loops in the modular orbifold $\mathbb{M} = \mathrm{PSL}_2(\mathbb{Z}) \backslash \mathbb{H}\mathbb{P}$

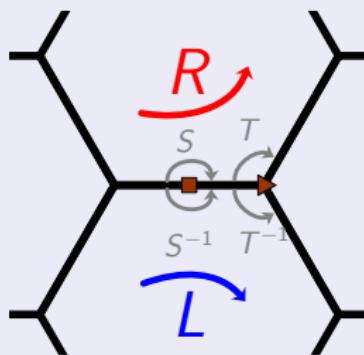
Free homotopy classes of oriented loops in \mathbb{M}	Conjugacy classes in $\pi_1(\mathbb{M}) = \mathrm{PSL}_2(\mathbb{Z})$
Around conic singularity i or j	Elliptic: S or $T^{\pm 1}$
Surround n times the cusp ∞	Parabolic: R^n , $n \in \mathbb{Z}$
$\exists!$ geodesic representative γ_A of length λ_A	Hyperbolic: $ \mathrm{Tr}(A) = 2 \cosh \left(\frac{1}{2} \lambda_A \right)$



Conjugacy classes and cyclic binary words

Euclidean monoid

The monoid $\text{PSL}_2(\mathbb{N})$ is freely generated by $L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$



Conjugacy class $[A]$ of an infinite order $A \in \text{PSL}_2(\mathbb{Z})$:

$[A] \cap \text{PSL}_2(\mathbb{N})$: cyclic permutations of an $L \& R$ -word $\neq \emptyset$.

Class is primitive \iff cyclic word is primitive.

Class is hyperbolic \iff $\#L > 0$ and $\#R > 0$.

Continued fractions and geodesics in \mathbb{M}

Every $\gamma \in \mathbb{R}_{\geq 1}$ has a *unique* Euclidean continued fraction expansion

$$[c_0, c_1, \dots] = c_0 + \frac{1}{c_1 + \dots} = R^{c_0} L^{c_1} \dots (\infty) \quad \text{with} \quad c_j \in \mathbb{N}_{\geq 1}.$$

The sequence (c_j) is **finite** if and only if γ is **rational**; otherwise, it is:
periodic $\iff \gamma$ is **quadratic**, and fixed by $R^{c_0} \dots L^{c_{2p-1}} \in \text{PSL}_2(\mathbb{N})$.
bounded $\iff \gamma$ is quadratic or **transcendental** ? (Conjecture [Sha92, §4].)

The axis of $A = R^{a_0} \dots L^{a_{2n-1}} \subset R \cdot \text{PSL}_2(\mathbb{N}) \cdot L$ is $(\alpha_-, \alpha_+) \subset \mathbb{HP}$ with

$$\alpha^+ = [\overline{a_0, \dots, a_{2n-1}}] \quad -1/\alpha^- = [\overline{a_{2n-1}, \dots, a_0}]$$

For all $-1/\alpha_- = [a_{-1}, a_{-2}, \dots]$ and $\alpha_+ = [a_0, a_1, a_2, \dots]$ in $\mathbb{R}_{>1}$, the geodesic $(\alpha_-, \alpha_+) \subset \mathbb{HP}$ intersects Δ according to the sequence a_n .

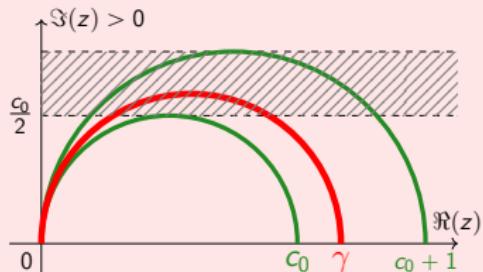
Lagrange spectrum and heights of geodesics

The size of c_n measures the depth of the n^{th} excursion to the cusp:

Horoball $\{\Im(z) > h\} \subset \mathbb{HP}$ at height $h \geq 1$
projects to $\mathbb{B}(h) \subset \mathbb{M}$ with area $1/h$.

The geodesic $(0, \gamma) \in \mathbb{HP}$ projected in \mathbb{M}
penetrates $\mathbb{B}(h)$ each time $n \in \mathbb{N}$ satisfies:

$$\lfloor 0, c_{n-1}, \dots, c_0 \rfloor + \lfloor c_n, c_{n+1}, \dots \rfloor \geq 2h.$$



The Lagrange constant $\mathcal{L}(\gamma)$ is the asymptotic height of $(0, \gamma)$:

$$\mathcal{L}(\gamma) = \limsup_n (\lfloor 0, c_{n-1}, \dots, c_0 \rfloor + \lfloor c_n, c_{n+1}, \dots \rfloor)$$

$$\mathcal{L}(\gamma) = \sup \{L \geq 0 : |\alpha - \frac{p}{q}| < \frac{1}{Lq^2} \text{ for infinitely many } p, q \in \mathbb{N}\}$$

What values can it take? Bounding size and pattern-complexity of (c_j)

$$\mathcal{L}(\gamma) = 0 \iff \gamma \in \mathbb{Q}$$

For $\alpha \notin \mathbb{Q}$ we have $\mathcal{L}(\gamma) \geq \limsup_n (\lfloor 0, 1, \dots, 1 \rfloor + \lfloor 1, 1, \dots \rfloor) = \sqrt{5}$

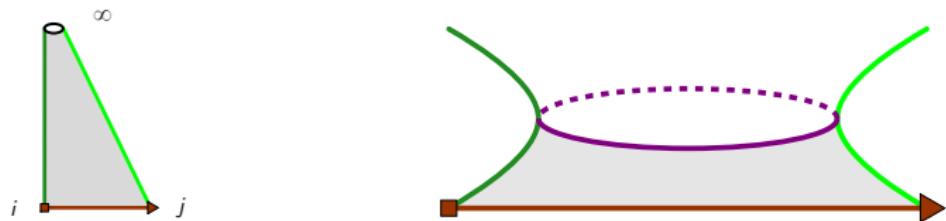
If $\mathcal{L}(\gamma) \leq 3$ then (c_j) is $\lesssim 2$ and has low complexity patterns...

Aparte: Deforming the representation $\mathrm{PSL}_2(\mathbb{Z}) \rightarrow \mathrm{PSL}_2(\mathbb{R})$

Faithful discrete $\rho_q: \mathrm{PSL}_2(\mathbb{Z}) \rightarrow \mathrm{PSL}_2(\mathbb{R})$ mod $\mathrm{PSL}_2(\mathbb{R})$ -conjugacy

or complete hyperbolic metrics on \mathbb{M} , are parametrized by $q \in \mathbb{R}^*$:

$$L_q = \begin{pmatrix} q & 0 \\ 1 & q^{-1} \end{pmatrix} \quad R_q = \begin{pmatrix} q & 1 \\ 0 & q^{-1} \end{pmatrix}.$$



The orbifold $\mathbb{M} = \mathbb{M}_1$ and its deformation \mathbb{M}_q with $q = (2 \sinh \frac{\lambda}{2})^2$

The universal representation $\rho_q: \mathrm{PSL}_2(\mathbb{Z}) \rightarrow \mathrm{PSL}_2(\mathbb{Z}[q^{\pm 1}])$ is Burau

The fixed points of $A_q = \rho_q(A)$ are the q -deformed quadratic numbers $\alpha_q \in \mathbb{Z}(q, q^{-1})[\sqrt{\mathrm{disc}(A_q)}]$.

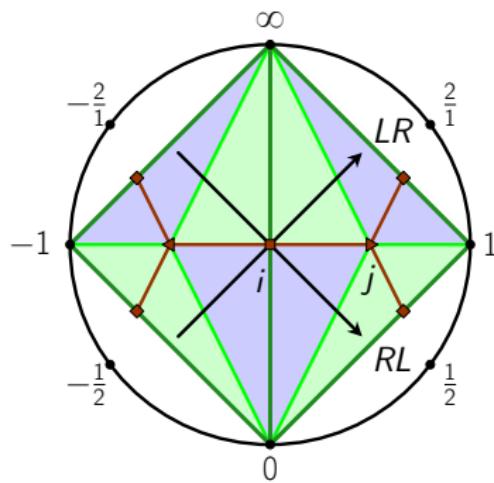
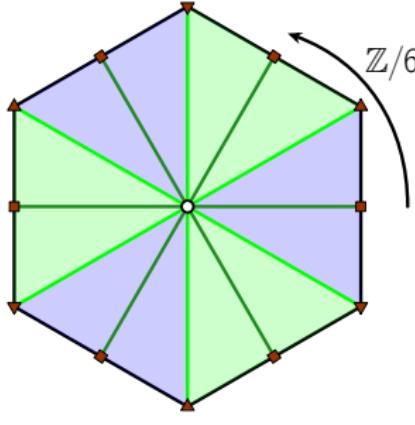
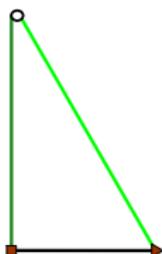
- 1 The modular group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ and its orbifold $\mathbb{M} = \Gamma \backslash \mathbb{H}\mathbb{P}$
- 2 The modular torus $\mathbb{M}' = \Gamma' \backslash \mathbb{H}\mathbb{P}$ and its simple geodesics
- 3 Generalizing to other arithmetic surfaces
- 4 Periods of modular forms along simple geodesics

The modular torus and its fundamental group

The abelianisation $\mathbb{Z}/2 * \mathbb{Z}/3 \rightarrow \mathbb{Z}/2 \times \mathbb{Z}/3$ of the modular group corresponds to the Galois cover of \mathbb{M} by a punctured torus \mathbb{M}' .

A punctured torus with $\pi_1(\mathbb{M}') = \text{PSL}_2(\mathbb{Z})' = \mathbb{Z}_X * \mathbb{Z}_Y$ where:

$$X = [T^{-1}, S] = LR = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{and} \quad Y = [T, S^{-1}] = RL = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

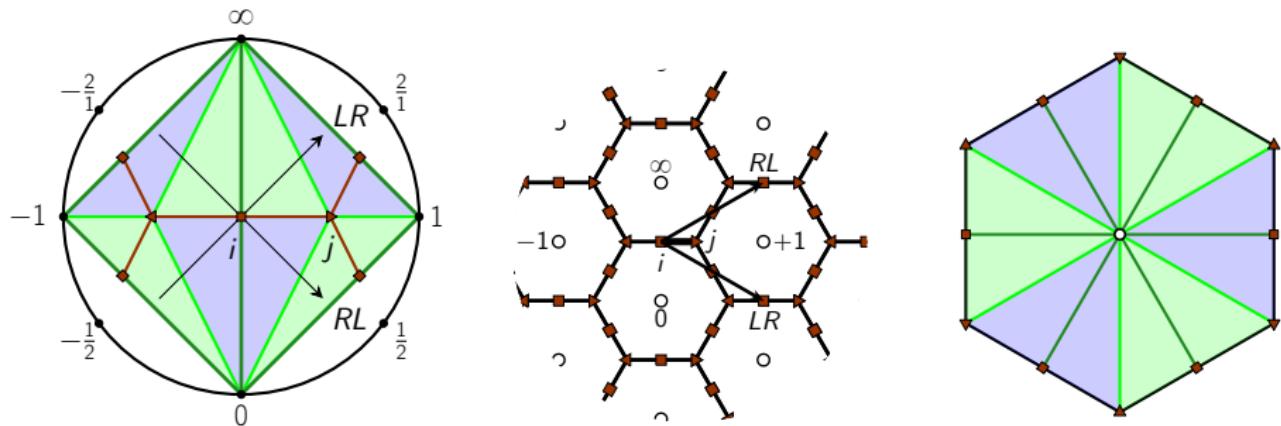


$$\mathbb{HP} \xrightarrow{\Gamma' \simeq F_2} \mathbb{M}' \xrightarrow{\Gamma/\Gamma' \simeq \mathbb{Z}/6} \mathbb{M}$$

The universal abelian cover of the modular torus

Hurwitz: $\pi_1(\mathbb{M}') \rightarrow H_1(\mathbb{M}'; \mathbb{Z}) = \text{Abel: } \mathbb{Z}_X * \mathbb{Z}_Y \rightarrow \mathbb{Z}_X \oplus \mathbb{Z}_Y$
 corresponds to a Galois cover of \mathbb{M}' by a lattice-punctured-plane \mathbb{M}'' .

The Jacobi integration map of \mathbb{M}' based at the cusp $\infty \in \partial\mathbb{M}'$ yields an identification $\mathbb{M}'' \rightarrow H_1(\mathbb{M}'; \mathbb{R}) \setminus H_1(\mathbb{M}'; \mathbb{Z})$

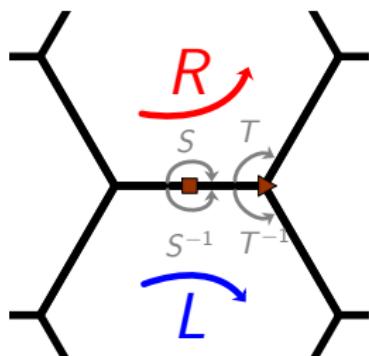
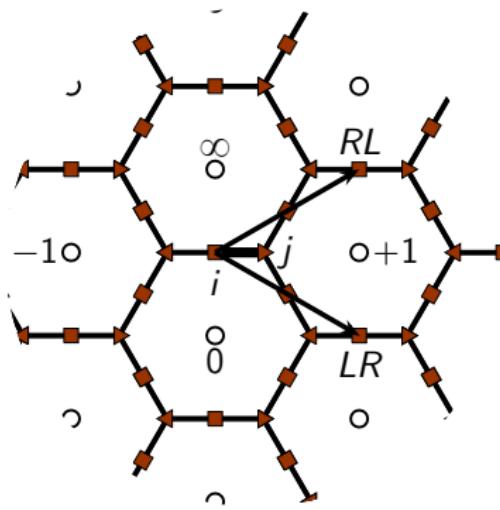


$$\mathbb{HP} \xrightarrow{\Gamma'' \simeq F_\infty} M'' \xrightarrow{\Gamma''/\Gamma' \simeq \mathbb{Z}^2} M'$$

The hexagonal group of isometries

The short exact sequence $\Gamma'/\Gamma'' \rightarrowtail \Gamma/\Gamma'' \twoheadrightarrow \Gamma/\Gamma'$ is split

The isometry group $\Gamma/\Gamma'' = (\mathbb{Z}_X \oplus \mathbb{Z}_Y) \rtimes ((\mathbb{Z}/2)_{D_S} \times (\mathbb{Z}/3)_{D_T})$ of \mathbb{M}'' acts like the crystallographic group of the hexagonal lattice.



Action of Γ/Γ'' on the hexagonal graph \mathcal{H} and cusps $\Gamma''\backslash\Gamma/\langle R \rangle$.

Action of $\text{Map}(\mathbb{M}')$ on loops and bases of $\pi_1(\mathbb{M}')$

Loops, simple loops and bases

Loops in \mathbb{M}' = conjugacy classes of $\mathbb{Z}_X * \mathbb{Z}_Y$ = cyclic words on X, Y .

Simple loops in \mathbb{M}' = primitive vectors in $H_1(\Gamma'; \mathbb{Z}) = \mathbb{Z}_X \oplus \mathbb{Z}_Y$.

Bases of $\Gamma' = \mathbb{Z}_X * \mathbb{Z}_Y$ correspond to bases of $H_1(\Gamma'; \mathbb{Z}) = \mathbb{Z}_X \oplus \mathbb{Z}_Y$,
hence to pairs of simple loops in \mathbb{M}' with one intersection point
(their commutator in Γ' yields the loop circling once around the cusp).

The mapping class group $\text{Map}(\mathbb{M}') = \text{Out}(\mathbb{Z}_X * \mathbb{Z}_Y) = \text{GL}(\mathbb{Z}_X \oplus \mathbb{Z}_Y)$

contains the positive mapping class group $\text{Map}^+(\mathbb{M}') = \text{SL}(\mathbb{Z}_X \oplus \mathbb{Z}_Y)$
(with index 2 and cokernel generated by $(X, Y) \mapsto (Y, X)$), which is
generated by the positive Dehn twists along the simple loops X and Y :

$$D_X: (X, Y) \mapsto (X, YX) \quad D_Y: (X, Y) \mapsto (XY, Y)$$

(whose relations are generated by the braid $D_Y D_X^{-1} D_Y = D_X^{-1} D_Y D_X^{-1}$).

The **substitution monoid** $\text{SL}_2(\mathbb{N}_X \oplus \mathbb{N}_Y)$ freely generated by D_X, D_Y acts
freely transitively on the set of oriented bases of the monoid $\mathbb{N}_X \oplus \mathbb{N}_Y$.

Action of $\text{Map}(\mathbb{M}')$ on simple geodesics of \mathbb{M}'

Which cyclic words on $\{X, Y\}$ correspond to simple loops in \mathbb{M}' ?

For a primitive vector $(p, q) \in \mathbb{Z}^2$, determine the cyclic word in $X \& Y$ associated to the unique simple geodesic of \mathbb{M}' homological to $X^p Y^q$.

Act by D_S, D_J so that $p \geq q \geq 0$, expand $\frac{p}{q} = [c_0, \dots, c_{2n+1}]$.

As $C = R^{c_0} \dots L^{c_{2n+1}}$ sends $\frac{1}{0}, \frac{0}{1}$ to the last convergents $\frac{p}{q}, \frac{p'}{q'}$:
let $D_C = D_Y^{c_0} \dots D_X^{c_k}$ act by substitution on the basis (Y, X)
to find the cyclic words of the simple loops in that basis.

Simple geodesics in \mathbb{M}' from Sturmian sequences on $\{LR, RL\}^{\mathbb{Z}}$

The simple loops of \mathbb{M}' are, up to $\mathbb{Z}/6$ -rotations, the projections of axes $(\alpha_-, \alpha_+) \subset \mathbb{HP}$ with $-1/\alpha_- = [a_{-1}, \dots]$ and $\alpha_+ = [a_0, \dots]$ in $\mathbb{R}_{>1}$ such that (a_n) is a Sturmian sequence on $\{1, 2\}$.

Diophantine approximation of (simple) geodesics in \mathbb{M}'

The Markov-Cohn constant of geodesic $(\alpha_-, \alpha_+) \subset \mathbb{HP} \bmod \mathrm{PSL}_2(\mathbb{Z})$

$\mathcal{C}(\alpha_-, \alpha_+)$ is the infimum of $2h \geq 2$ such that (α_-, α_+) intersects $\mathbb{B}(h)$.

When $-1/\alpha_- = \lfloor a_{-1}, a_{-2}, \dots \rfloor$ and $\alpha_+ = \lfloor a_0, a_1, a_2, \dots \rfloor$ we have:

$$\mathcal{C}(\alpha_-, \alpha_+) = \sup_n (\lfloor 0, a_{n-1}, a_{n-2}, \dots \rfloor + \lfloor a_n, a_{n+1}, \dots \rfloor).$$

Simple loops in \mathbb{M}' (Haas [Haa87] building on Cohn [Coh71])

For distinct $\alpha_-, \alpha_+ \in \mathbb{RP}^1$ not both rational, the following are equivalent:

The geodesic $(\alpha_-, \alpha_+) \subset \mathbb{M}'$ is simple (and closed).

The sequence (a_j) is Sturmian on $\{1, 2\}$ (and periodic).

The cusp height $\mathcal{C}(\alpha_-, \alpha_+)$ is $\in [\sqrt{5}, 3]$ (and < 3).

For such simple $(\alpha_-, \alpha_+) \subset \mathbb{M}'$ we have $\mathcal{C}(\alpha_-, \alpha_+) = 3 \coth \left(\frac{1}{2} \ell_{\mathbb{M}'}(\alpha) \right)$:

If $\mathcal{C} < 3$ then α_{\pm} are conjugate quadratic roots of Markov forms.

If $\mathcal{C} = 3$ then α_{\pm} are transcendental ([ADQZ01]).

Geometry of the unicity conjecture for the Markov spectrum

The trace relation for all $A, B \in \mathrm{SL}_2$, denoting $C_{\pm} = AB^{\pm 1}$

- ✳ $\mathrm{Tr}(A) \mathrm{Tr}(B) = \mathrm{Tr}(C_+) + \mathrm{Tr}(C_-)$ by Cayley-Hamilton
- $\mathrm{Tr}[A, B] = \mathrm{Tr}(A)^2 + \mathrm{Tr}(B)^2 + \mathrm{Tr}(C_{\pm})^2 - \mathrm{Tr}(A) \mathrm{Tr}(B) \mathrm{Tr}(C_{\pm}) - 2$
Holed tori = Fuchsian groups $\langle A, B \rangle$ with $\mathrm{Tr}[A, B] \leq -2$.

Bases of *punctured* hyperbolic tori yield solutions of Markov cubic

For a basis (α, β) of $\pi_1(\mathbb{M}')$ namely simple loops with $i(\alpha, \beta) = 1$, the loop $\gamma = \alpha\beta = D_{\beta}(\alpha)$ yields bases (α, γ) & (γ, β) and $[\alpha, \beta] = \odot$.

The traces (a, b, c) of superbases (α, β, γ) satisfy $a^2 + b^2 + c^2 = abc$.

$D_S, D_T \in \mathrm{SL}_2(\mathbb{Z}_X \oplus \mathbb{Z}_Y)$ change (a, b, c) to $(b, a, ab - c), (c, b, a)$ and the orbit of $(3, 3, 3)$ yields *all* integral solutions to Markov cubic.

Markov conjectures unicity length/height spectrum simple loops \mathbb{M}'

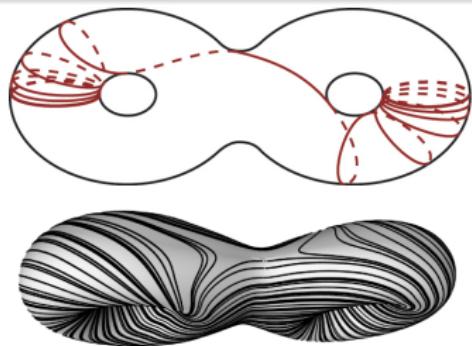
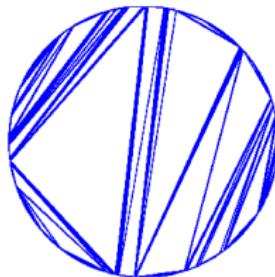
Simplicity of the q -variable spectrum is known.

- 1 The modular group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ and its orbifold $\mathbb{M} = \Gamma \backslash \mathbb{H}\mathbb{P}$
- 2 The modular torus $\mathbb{M}' = \Gamma' \backslash \mathbb{H}\mathbb{P}$ and its simple geodesics
- 3 Generalizing to other arithmetic surfaces
- 4 Periods of modular forms along simple geodesics

Generalizing to other arithmetic surfaces (ongoing work)

Conjecture: quadratic-transcendent dichotomy in arithmetic surfaces

In an arithmetic surface $S = \Gamma \backslash \mathbb{H}\mathbb{P}$ consider a simple geodesic.
If it is not asymptotic to a cusp or to a closed geodesic
then any of its lifts in $\mathbb{H}\mathbb{P}$ has ends in $\mathbb{R}\mathbb{P}^1$ that are transcendental.



Strategy and philosophy of the proof

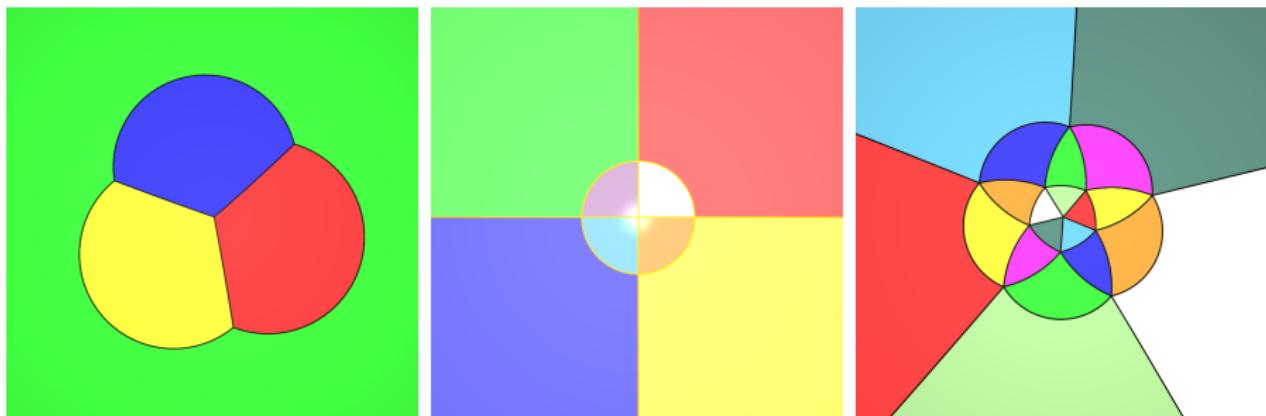
Topological simplicity leads (via $\text{Map}(S)$ symmetries or dynamics) to
low symbolic complexity leads (via Schmidt subspace dichotomy) to
arithmetic rigidity ($\deg \leq 2$ over invariant trace field or transcendental)

The example of congruence subgroups

Questions: the simple real quadratic numbers of level N

Which real quadratic numbers arise from end-lifts of simple closed geodesics in the congruence cover \mathbb{M}_n ?

The congruence subgroups $\Gamma(n)$ for $n = 3, 4, 5$ yield the platonic covers $\mathbb{M}_n = \mathbb{CP}^1$ minus regular tetrahedron, octahedron, icosahedron and $\text{Map}(\mathbb{M}_n, \partial\mathbb{M}_n) = \text{Braid}_n(\mathbb{CP}^1)$ for $n = 3, 5, 11 = \dim H_1(\mathbb{M}_n, \mathbb{Z})$.



Stereographic projections of the platonic triangulations

Bibliography

 J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni.

Transcendence of Sturmian or morphic continued fractions.

J. Number Theory, 91(1):39–66, 2001.

 Harvey Cohn.

Representation of markoff's binary quadratic forms by geodesics on a perforated torus.

Acta Arithmetica, 18(1):125–136, 1971.

 Andrew Haas.

The geometry of Markoff forms.

In *Number theory (New York, 1984–1985)*, volume 1240 of *Lecture Notes in Math.*, pages 135–144. Springer, Berlin, 1987.

 Peter Kleban and Don Zagier.

Crossing probabilities and modular forms.

J. Statist. Phys., 113(3-4):431–454, 2003.

 The LMFDB Collaboration.

The L-functions and modular forms database.

<https://www.lmfdb.org>, 2024.

[Online; accessed 18 February 2024].

 Theodor Schneider.

Ein satz über ganzwertige funktionen als prinzip für transzendenzbeweise.

Mathematische Annalen, 121:131–140, 1949.

 Jeffrey Shallit.

Real numbers with bounded partial quotients: a survey.

Enseign. Math. (2), 38(1-2):151–187, 1992.

- 1 The modular group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ and its orbifold $\mathbb{M} = \Gamma \backslash \mathbb{H}\mathbb{P}$
- 2 The modular torus $\mathbb{M}' = \Gamma' \backslash \mathbb{H}\mathbb{P}$ and its simple geodesics
- 3 Generalizing to other arithmetic surfaces
- 4 Periods of modular forms along simple geodesics

Values, limits and periods of the modular $j: \mathbb{HP} \rightarrow \mathbb{C}$

Unique Γ -modular holomorphic function $j: \mathbb{HP} \rightarrow \mathbb{C}$ uniformizing \mathbb{M}

$$j(\infty) = \infty^1 \quad j(j) = 0 \quad j(i) = 12^3$$

The quadratic transcendence dichotomy (Schneider [Sch49])

For $\tau \in \mathbb{HP}$: $j(\tau)$ is algebraic if and only if τ is complex quadratic.

Fundamental theorem in class field theory \cap complex multiplication

For quadratic $\tau \in \mathbb{HP}$, the extension $\mathbb{Q}(\tau)(j(\tau))/\mathbb{Q}(\tau)$ is unramified abelian, depending only on the order \mathcal{O} of the lattice $\mathbb{Z}[\tau]$, with Galois group $\text{Cl}(\mathcal{O})$. This describes all unramified abelian extensions of complex quadratic fields.

Kronecker Jugendtraum : abelian extensions of real quadratic fields ?

Study limits of j at $\gamma \in \mathbb{RP}^1$ and cycle integrals along $\alpha \subset \mathbb{M}$?

Periods of Dedekind $\eta^4(z)dz$ or the Abel Jacobi map on \mathbb{M}'

Primitive of the abelian differential and cusp compactification

Abelian du on \mathbb{M}' lifts on \mathbb{HP} to $C\eta^4(z)dz$ where $C = \frac{2^{10/3}}{3^{3/4}} \frac{\pi^{5/2}}{\Gamma(1/3)^3}$.

$\eta^4(6\tau) = q \prod_1^\infty (1 - q^{6n})^4 = \sum \psi(n) \exp(i2\pi n\tau)$ is [LMF24, 32.2.a.a] the unique normalised cusp eigenform for the group $\Gamma_0(36)$.

The primitive $\text{hexp}(\tau) = \int_\infty^\tau C\eta^4(z)dz = \frac{12C}{i\pi} \sum_1^\infty \frac{\psi(n)}{n} \cdot \exp\left(\frac{i\pi}{12}n\tau\right)$ yields $\text{hexp}: \mathbb{HP} \rightarrow \mathbb{C} \setminus \Lambda$ uniformizing $H_1(\mathbb{M}'; \mathbb{R}) \setminus H_1(\mathbb{M}'; \mathbb{Z}) = \mathbb{M}''$.

Cusp compactification $\partial \text{hexp} \mathbb{QP}^1 \rightarrow \Lambda = H_1(\mathbb{M}'; \mathbb{Z}) = \Gamma' / \Gamma''$.

Periods of the abelian differential

For coprime $a, c \in \mathbb{Z}$, there exists $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma'$: let $A \equiv X^m Y^n \pmod{\Gamma''}$. The limit of the improper integral and conditionally convergent series:

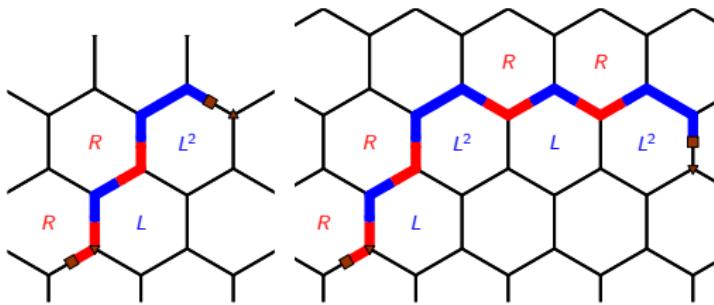
$$\partial \text{hexp}\left(\frac{a}{c}\right) = \int_\infty^{\frac{a}{c}} C\eta^4(z)dz = \frac{12C}{i\pi} \sum_{n=1}^\infty \frac{\psi(n)}{n} \cdot \exp\left(\frac{i\pi}{12} \frac{a}{c} n\right)$$

is $\partial \text{hexp}\left(\frac{a}{c}\right) = |\omega_0| \left(m \exp\left(-\frac{i\pi}{6}\right) + n \exp\left(+\frac{i\pi}{6}\right) \right)$ where $|\omega_0| = \frac{2\pi^{1/2}}{3^{1/4}}$.

The Radial compactification Shexp: $\mathcal{R} \rightarrow \mathbb{SH}_1(\mathbb{M}'; \mathbb{R})$

We define the radial compactification Shexp: $\mathcal{R} \rightarrow \mathbb{R}/2\pi\mathbb{Z}$

\mathcal{R} = the set of $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that as $\tau \in \mathbb{HP}$ converges to $\alpha \in \partial \mathbb{HP}$, the argument $\arg \text{hexp}(\tau) \in \mathbb{R}/(2\pi\mathbb{Z})$ converges to Shexp(α), namely the geodesic $\text{hexp}(i, \alpha) \subset \mathbb{M}''$, following the $L\&R$ -cf-expansion of α , escapes in a definite direction which defines Shexp(α) $\in \mathbb{SH}_1(\mathbb{M}'; \mathbb{R})$.



Shexp(α) recovers the slope of the parallel Sturmian sequences to α

Shexp: $\mathcal{R} \rightarrow \mathbb{R}/2\pi\mathbb{Z}$ restricts to continuous surjection $\mathcal{S} \rightarrow \mathbb{R}/2\pi\mathbb{Z}$

Continued fraction expansion for $\text{hexp}(\lambda)$... and $\text{Shexp}(\gamma)$?

The modular function $\lambda: \mathbb{HP} \rightarrow \mathbb{C} \setminus \{0, 1, \infty\}$ uniformizes the congruence cover $\mathbb{M}(2)$ of \mathbb{M} associated to the congruence subgroup $\Gamma(2)$ of Γ .

The cover $\mathbb{HP}/\Gamma(2) \rightarrow \mathbb{HP}/\Gamma$ has solvable Galois group \mathfrak{S}_3
so λ is an algebraic function of j , namely $j = \frac{27(1-\lambda+\lambda^2)^3}{4\lambda^2(1-\lambda)^2}$.

Gauss continued fraction for consecutive hypergeometric ratios yields

With [KZ03] we find $\int_{\infty}^{\tau} \eta^4(z) dz = \frac{3}{i2\pi} \left(\frac{1}{2}\lambda\right)^{1/3} \cdot {}_2F_1(1/3, 2/3, 4/3; \lambda(\tau))$ so:

$$\text{hexp}(\tau) = \int_{\infty}^{\tau} C \eta^4(z) dz = \frac{3C}{i2\pi} \left(\frac{1}{2}\lambda(1-\lambda)\right)^{1/3} \cdot \frac{1}{1 - \frac{n_1\lambda}{1 - \frac{n_2\lambda}{1 - \dots}}}$$

where for $k \in \mathbb{N}$: $n_{2k+1} = \frac{(k+1/3)}{2(2k+1/3)}$ and for $k \in \mathbb{N}^*$: $n_{2k} = \frac{k}{2(2k+1/3)}$.

A continued fraction expansion for $\tan \circ \text{Shexp}: \mathcal{R} \rightarrow \mathbb{RP}^1$?

Thank you for your attention and feel free to ask (m)any questions.

Bibliography

 J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni.

Transcendence of Sturmian or morphic continued fractions.

J. Number Theory, 91(1):39–66, 2001.

 Harvey Cohn.

Representation of Markoff's binary quadratic forms by geodesics on a perforated torus.

Acta Arithmetica, 18(1):125–136, 1971.

 Andrew Haas.

The geometry of Markoff forms.

In *Number theory (New York, 1984–1985)*, volume 1240 of *Lecture Notes in Math.*, pages 135–144. Springer, Berlin, 1987.

 Peter Kleban and Don Zagier.

Crossing probabilities and modular forms.

J. Statist. Phys., 113(3-4):431–454, 2003.

 The LMFDB Collaboration.

The L-functions and modular forms database.

<https://www.lmfdb.org>, 2024.

[Online; accessed 18 February 2024].

 Theodor Schneider.

Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise.

Mathematische Annalen, 121:131–140, 1949.

 Jeffrey Shallit.

Real numbers with bounded partial quotients: a survey.

Enseign. Math. (2), 38(1-2):151–187, 1992.