Transcendance of simple geodesics in arithmetic surfaces

Dynamics of modular groups and diophantine approximation
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© The modular group I' = PSL»(Z) and its orbifold M = M\HP



Modular group PSL,(Z) acting on the hyperbolic plane HP
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Tiling HP under the action of the modular group PSLy(Z) = Z/2 + Z/3
by the (Farey) ideal triangulation together with its (Bass-Serre) dual tree.
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Loops in the modular orbifold Ml = PSL,(Z)\HP

Free homotopy classes of
oriented loops in M

Conjugacy classes in
7T1(M) = PSL2(Z)

Around conic singularity i or j

Elliptic: S or T*!

Suround n times the cusp o

Parabolic: R", ne 7Z

3! geodesic representative
~va of length g

Hyperbolic:
[ Tr(A)| = 2 cosh (3\4)
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Conjugacy classes and cyclic binary words

Euclidean monoid
The monoid PSL,(N) is freely generated by L = (19) and R = (}31)

Conjugacy class [A] of an infinite order A € PSL,(Z):
[A] n PSLy(N) : cyclic permutations of an L&R-word # (.
Class is primitive <= cyclic word is primitive.
Class is hyperbolic <= #L > 0 and #R > 0.




Continued fractions and geodesics in M

Every v € R has a unique Euclidean continued fraction expansion

lCo,Cl,...J = + c1—1&-... = Rwo[q.... (OO) with G € N>;.

The sequence (¢;) is finite if and only if v is rational; otherwise, it is:

periodic <= + is quadratic, and fixed by R ... L%-1 € PSL,(N).
bounded <= + is quadratic or transcendental 7 (Conjecture [Sha92, §4].)

v

The axis of A= R%® ... [%1 c R-PSLy(N)- Lis (a—,a;) < HP with

a+:|_307~--a32n—1J —1/04_:[82,,_1,...,30J

Forall -1/a_ =|a_1,a_2,...] and ay = | ap, a1, a2,...| in R, the
geodesic (a_, ay) < HP intersects /\ according to the sequence a,,.




Lagrange spectrum and heights of geodesics

The size of ¢, measures the depth of the nt" excursion to the cusp:

Horoball {S(z) > h} < HIP at height h > 1 et

projects to B(h) < M with area 1/h.

The geodesic (0,v) € HP projected in M

penetrates B(h) each time n € N satisfies:
|0, cn—1,--.,¢0] +|¢nCnt1,...| =2h.

The Lagrange constant .Z(7y) is the asymptotic height of (0,~):

Z(y) = limsup, (|0, cp—1,...,¢c0 | + | cns Cnst1,---])
Z(y) =sup{L=0: |a — §| < LLqZ for infinitely many p, g € N}

What values can it take? Bounding size and pattern-complexity of (¢;)
L) =0 < veQ

For a ¢ Q we have Z(7) = limsup, (|0,1,...,1]+|1,1,...]) =5
If Z(v) <3 then (¢j) is < 2 and has low complexity patterns...
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Aparte: Deforming the representation PSL,(Z) — PSL,(R)

Faithful discrete p,: PSL2(Z) — PSLy(R) modPSL,(R)-conjugacy

or complete hyperbolic metrics on M, are parametrized by g € R*:
Lg=(9° Ry= (9"
q — 1 qfl - 0 qfl .

oe}

i J

The orbifold M = M; and its deformation Mg with g = (2sinh 5)?

The universal representation p,: PSL2(Z) — PSLy(Z[g*!]) is Burau

The fixed points of A; = pq(A) are the g-deformed
quadratic numbers o € Z(q, g~ 1) [+/disc(Aq)]-




© The modular torus M’ = ["\HP and its simple geodesics



The modular torus and its fundamental group

The abelianisation Z/2 « Z/3 — 7Z/2 x 7Z/3 of the modular group

corresponds the Galois cover of M by a punctured torus M.

A punctured torus with 71 (M') = PSL2(Z)" = Zx * Zy where:
X=[TS]=LR=(}}) and Y=[T,5']=RL=(3}])

Z/6

InF r/r~7/6
2 M/ / /

HP ~ M




The universal abelian cover of the modular torus

Hurwicz: m(M') — Hi(M'; Z) = Abel: Zx * Zy — Zx ® Ly
corresponds to a Galois cover of M by a lattice-punctured-plane M”.

The Jacobi integration map of M based at the cusp o0 € OM’ yields
an identification M” — H; (M/; R)\H; (M; Z)

HP M ~Fq M r/r~72 M




The hexagonal group of isometries

The short exact sequence I"/T" — /T — T/T" is split

The isometry group I'/T" = (Zx ®Zy) x ((Z/2)ps x (Z/3)p,) of M"
acts like the crystallographic group of the hexagonal lattice.

Action of I'/T” on the hexagonal graph H and cusps I"\l'/{R).



Action of Map(M') on loops and bases of 71 (M)

Loops, simple loops and bases
Loops in M = conjugacy classes of Zx * Zy = cyclic words on X, Y.
Simple loops in M = primitive vectors in Hy(I";Z) = Zx ® Zy .
Bases of " = Zx * Zy correspond to bases of Hy([";Z) = Zx ® Zy,

hence to pairs of simple loops in M’ with one intersection point
(their commutator in I yields the loop circling once around the cusp).

The mapping class group Map(M') = Out(Zx * Zy) = GL(Zx ® Zy)

contains the positive mapping class group Map™ (M') = SL(Zx ® Zy)
(with index 2 and cokernel generated by (X, Y) — (Y, X)), which is
generated by the positive Dehn twists along the simple loops X and Y:

Dx: (X,Y)— (X,¥YX)  Dy: (X,Y)— (XY,Y)

(whose relations are generated by the braid DyD)?lDy = D;lDyD)?l).
The substitution monoid SL>(Nx @ Ny) freely generated by Dx, Dy acts
freely transitively on the set of oriented bases of the monoid Nx @ Ny.




Action of Map(M') on simple geodesics of M/

Which cyclic words on {X, Y} correspond to simple loops in M'?

For a primitive vector (p, q) € Z?, determine the cyclic word in X&Y
associated to the unique simple geodesic of M’ homological to XPY9.

Act by Ds, D, so that p > g > 0, expand g =|co,--sCont1]-

/
As C = R% ... [%n+1 sends %,% to the last convergents g, %:

let Dc = DY ... Dy act by substitution on the basis (Y, X)
to find the cyclic words of the simple loops in that basis.

Simple geodesics in M from Sturmian sequences on {LR, RL}*

The simple loops of M are, up to Z/6-rotations, the projections of axes
(a—,aq) € HP with —1/a_ =|a_-1,...] and ay =] ap,...| in R-1 such
that (a,) is a Sturmian sequence on {1,2}.




Diophantine approximation of (simple) geodesics in M/

The Markov-Cohn constant of geodesic (a_, ;) € HP mod PSLy(Z)

€ (a—,ay) is the infimum of 2h > 2 such that (a—, oy ) intersects B(h).

When —1/a_ =|a_1,a_2,...| and ay = | a9, a1, a2, ... | we have:
C(a—,ay) =sup,(|0,an—1,an—2,...] + | an, an+1,...])-

Simple loops in M (Haas [Haa87] building on Cohn [Coh71])

For distinct or_, a. € RP! not both rational, the following are equivalent:
The geodesic (a—, ;) € M is simple (and closed).
The sequence (a;) is Sturmian on {1, 2} (and periodic).
The cusp height €' (a_, a4 ) is € [V/5,3] (and < 3).

For such simple (a—,ay) € M’ we have € (a_, a;) = 3coth (%EM/(Q)):
If € < 3 then a4 are conjugate quadratic roots of Markov forms.
If € = 3 then a4 are transcendental ([ADQZ01]).




Geometry of the unicity conjecture for the Markov spectrum

The trace relation for all A, B € SL,, denoting C, = AB*!

> Tr(A) Tr(B) = Tr(C4) + Tr(C-) by Cayley-Hamilton

O Tr[A,B] = Tr(A)? + Tr(B)? + Tr(C4)? — Tr(A) Tr(B) Tr(Cy) — 2
Holed tori = Fuchsian groups (A, B) with Tr[A, B] < —2.

Bases of punctured hyperbolic tori yield solutions of Markov cubic
For a basis («, 3) of m1(M’) namely simple loops with i(a, §) = 1, the
loop v = a8 = Dg(«) yields bases (o, v) & (v, 5) and [a, 5] = (©.
The traces (a, b, ¢) of superbases (a, 3, ) satisfy a® + b + c? = abc.
Ds, Dt € SLy(Zx @ Zy) change (a, b, c) to (b,a,ab— c), (c, b, a)
and the orbit of (3,3, 3) yields all integral solutions to Markov cubic.

v

Markov conjectures unicity length/height spectrum simple loops M/

Simplicity of the g-variable spectrum is known.




© Generalizing to other arithmetic surfaces



Generalizing to other arithmetic surfaces (ongoing work)

Conjecture: quadratic-transcendent dichotomy in arithmetic surfaces
In an arithmetic surface S = MN\HIP consider a simple geodesic.

If it is not asymptotic to a cusp or to a closed geodesic

then any of its lifts in HPP has ends in RP! that are transcendent.

Strategy and philosophy of the proof

Topological simplicity leads (via Map(S) symmetries or dynamics) to
low symbolic complexity leads (via Schmidt subspace dichotomy) to
arithmetic rigidity (deg < 2 over invariant trace field or transcendent)




The example of congruence subgroups

Questions: the simple real quadratic numbers of level N

Which real quadratic numbers arise from end-lifts of
simple closed geodesics in the congruence cover M, 7

The congruence subgroups I'(n) for n = 3,4,5 yield the platonic
covers M, = CP! minus regular tetrahedron, octahedron, icosahedron
and Map(M,,, M) = Braid,(CP!) for n = 3,5,11 = dim H;(M,, Z).

e

Stereographic projections of the platonic triangulations
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@ Periods of modular forms along simple geodesics



Values, limits and periods of the modular j: HP — C

Unique -modular holomorphic function j: HIP — C uniformizing M

j(0) = o' j(j)=0 j(i)=12°

The quadratic transcendence dichotomy (Schneider [Sch49])

For 7 € HP : j(7) is algebraic if and only if 7 is complex quadratic.

Fundamental theorem in class field theory n complex multiplication

For quadratic 7 € HP, the extension Q(7)(j(7))/Q(7) is unramified abelian,
depending only on the order O of the lattice Z[7], with Galois group CI(O).
This describes all unramified abelian extensions of complex quadratic fields.

Kronecker Jugendtraum : abelian extensions of real quadratic fields 7

Study limits of j at v € RP! and cycle integrals along & < M ?




Periods of Dedekind n*(z)dz or the Abel Jacobi map on M’

Primitive of the abelian differential and cusp compactification

Abelian du on M lifts on HP to Cn*(z)dz where C = 23130/7 r(’f/;)3.

n*(67) = q[I7(1 — q®")* = D 9 (n) exp(i2wnT) is [LMF24, 32.2.a.3]
the unique normalised cusp eigenform for the group Ip(36).

The primitive hexp(7 S Cn*(z)dz = 12C > ¥in) exp (%"7)

n

yields hexp: HP — (C\/\ uniformizing Hl(M/ R)\H1 (M/; Z) = M".
Cusp compactification @ hexp QP! — A = H;(M/;Z) = F’/F”

Periods of the abelian differential

For coprime a, c € Z, there exists A = (C d) el let A= X"Y" mod I'”.

The limit of the i improper integral and conditionally convergent series:
e}

d hexp(2 f Cn*(2)dz = 12C w( ) - exp (ggn)
n=1

is Jhexp(2) = |wo (m exp(—%’) + nexp(+%7)) where |wp| = 23”1—:;12.



https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/36/2/a/a

The Radial compactification Shexp: #Z — SH;(M; R)

We define the radial compactification Shexp: #Z — R/277Z
X = the set of a € R\Q such that as 7 € HIP converges to o € JHP,
the argument arg hexp(7) € R/(27Z) converges to Shexp(c), namely

the geodesic hexp(i, o) = M”, following the L& R-cf-expansion of «,
escapes in a definite direction which defines Shexp(«) € SH;(M/; R).

Shexp(c) recovers the slope of the parallel Sturmian sequences to « J

Shexp: # — R/27Z restricts to continuous surjection . — R/27Z




Continued fraction expansion for hexp(\)... and Shexp(y) 7

The modular function A: HP — C\{0, 1, o0} uniformizes the congruence
cover M((2) of M associated to the congruence subgroup I'(2) of I

The cover HP/I'(2) — HP/T" has solvable Galois group &3

233
so A is an algebraic function of j, namely j = 277(/\12_(?%?)2)—.

Gauss continued fraction for consecutive hypergeometric ratios yields

With [KZ03] we find {7 7%(2)dz = 2= (30) "> 2F1(1/3,2/3,4/3; A(7)) so:

27
T 1/3 1
hexp(7) = f Cn*(z)dz = % (3A1 =) 3. - _mio
o0 - 1— np

=005

where for k € N: nyy 1 = % and for k € N*: ny = —2(2,({?1/3)-

A continued fraction expansion for tan o Shexp: % — RP* ?




Thank you for your attention and feel free to ask (m)any questions.
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