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@ Conjugacy classes of the modular group



Modular group PSLy(Z) acting on the hyperbolic plane HP
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Tiling HP under the action of the modular group PSL2(Z) =Z/2 % Z/3,
the basic fundamental tile, and the modular orbifold M = PSL,(Z)\HP.



Loops in the modular orbifold Ml = PSL,(Z)\HP
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Modular geodesics as projections of hyperbolic axes




Modular geodesics as projections of hyperbolic axes




Modular geodesics as projections of hyperbolic axes

|

The axis of A= RLLL in HP from o~ = —1/[3,1] to ot = | 1,3 in RP™.




Conjugacy classes and cyclic binary words

The Euclidean monoid PSL,(N) = {L, R}*
@ The monoid PSLy(N) is freely generated by L = (19) and R = (}1).
@ For A € PSLy(Z) we have A € PSLp(N) < o~ <0< a™.

@ For A € PSLy(N) its {L, R}-factorisation has exponents yielding the
convergents in the continued fraction expansion of a™.

The conjugacy class [A] of an infinite order A € PSL,(Z) satisfies:
e [A] N PSLy(N) = cyclic permutations of an L&R-word # ().
o Class is primitive <= cyclic word is primitive.

o Class is hyperbolic <= #L > 0 and #R > 0.

@ denote its combinatorial length by len(A) = #R + #L
o define its Rademacher cocycle as Rad(A) = #R — #L




The Rademacher invariant in arithmetic, topology, physics...

The Rademacher invariant function Rad: PSLy(Z) — Z is the
3 Cocycle for the Eisenstein series Ep (logarithm of Dedekind function 7)
2 Signature defect of the torus bundle with monodromy A

o 0 o o o ign Qa(m,n)
5 Special value at 0 of the Shimizu L-function for La(s) = Y S‘gQA(#)'s

Logarithm of the Dedekind #-Funktion 371

It may now be convenient to summarize all our results in an omnibus theorem:

(5.60) Theorem. Let A eSL (2, Z) be hyperbolic. Then the following invariants of A
coincide.

1) Meyer's signature invariant ¢ (A) (see (5.3) ).

2) Hirzebruch's signature defect 0(A).

3) The invariant y (A) describing the transformation properties of log n(t) under 4
(see (5.22)).

4) ((A) the logarithmic monodromy (divided by wi) of Quillen’s determinant
line-bundle & .

5) The value L,(0) of the Shimizu L-function (see (5.49)).

6) The Ativah-Patodi-Singer invariant n(A).

7y The “adiabatic limit™ n°(A).

Atiyah's omnibus theorem [Ati87]



© The topological meaning of the Rademacher cocycle



Unit tangent bundle U of the modular orbifold M

PSL>(R) PSLa() U
st st
HP M
PSLo(Z)

The Seifert fibration U — M
reveals that U ~ S3 \ trefoil.

The extension of fundamental group S! ~— 1 (U) — 71 (M)

yields the universal central extension Z ~— B3 — PSL(Z) which is
the quotient of the braid group B3 = (01,02 | 010201 = 020102)
by its center generated by (0102)°® sending 01_1 — L and o5 — R.




Primitive modular geodesics in M lift to modular knots in U

Hyperbolic classes | Modular geodesics | Periodic orbits
in PSL2(Z) in M inU
trace form intersection form linking form

s

The primitive modular geodesic [o] lifts to the modular knot &



Master modular link isotopes into the Lorenz template

The master modular link isotopes into the Lorenz template so that the
periodic orbit associated to A € PSLy(N) follows the sequence follows that
sequence of left and right turns according to its {L, R}-factorisation.

This is shown in [Ghy07] by opening the cusp of M, deforming the
Fuchsian representation pg: m1(M) — PSLy(R) to the boundary, so that
the unit tangent bundle of M, isotopes to that of the Lorenz template.



https://www.josleys.com/articles/ams_article/images/Deformation.mov

Linking the trefoil recovers the Rademacher cocycle

Theorems [BG92, Ghy07] :
For hyperbolic A € PSL»(Z) we have Rad(A) = Ik(trefoil, ka).

The function Rad: PSLy(Z) — Z is the pseudocharacter associated to
the central extension Z — B3 — PSLy(Z).

([ m(St) =Z Hi(SY) = Z
(M) = F> m(U) = Bs—%& > Hi(U) = Z
m (M) = Fo —> m (M) = PSLy(Z) 22> Hy (M) = Z/6

The Euler class in H?>(PSLy(Z); Z) classifying the central extension of the
middle column is the pull back by the abelianisation PSL2(Z) — Z/6 of the
Euler class H?(Z/6; Z) classifying the central extension of the right column.




Linking the trefoil recovers the Rademacher cocycle
Theorems [BG92, Ghy07] :

For hyperbolic A € PSL»(Z) we have Rad(A) = Ik(trefoil, ka).

The function Rad: PSLy(Z) — Z is the pseudocharacter associated to
the central extension Z — B3 — PSL2(Z).

gL

Pages of the open book decomposition ; the universal abelian cover M’ — M.




What about the linking of modular knots ?

Another question would be to give an arithmetical or combinatorial computation
of the linking numbers of two knots k4 and kp as a function of A, B in PSL(2, Z)

Picture from [GL16] and Question from [Ghy07].



© Pscudocharacter of the modular group from Brooks cocycles



Pseudocharacters of a group ' and their Banach quotient

Definition: Pseudocharacters are homogeneous quasicharacters

A function ¢: I — R is a quasicharacter when it has a bounded derivative:

do: 'xl =R do(A,B) = ¢(B) — ¢(AB) + ¢(A).
It is homogeneous when ¢(A") = n¢(A) for all A€ T and n € Z.

Theorem ([MM85, Iva88]) : a Banach space

The R-vector space PX(I") has weak* topology (pointwize convergence).
o Semi-norm ||d¢||oo With ker || d¢|lo = HY(I; R) € PX(T)
@ The quotient is H o(T') = PX(T")/H'(T; R)... a Banach space!

Rotation numbers: from commutative to non-commutative

Characters H(T'; Z) = Hom(I"; S1).

Pseudocharacters HZ(T"; Z) D Hom(I"; Homeo(S*)) mod semi-conj [Ghy87].
V.




Brooks cocycles for groups acting on trees

Brooks-Series cocycles ([BS84, BG91]) and [Gri95, Lemma 5.3]

For a non-overlapping pattern P € PSLy(N), the measure of P-asymmetry
is the conjugacy invariant function masp: PSLy(Z) — Z defined:
@ A € PSL(N) — masp(A) = occp(A) — occp(A*)
(In particular for P = R we have Rad(A) = masg(A).)
o A € Tors(PSL2(Z)) — masp(A) = 0.
We have masp € PX(PSL2(Z)) and ||d masp||oc < 6.
If P # P* then d masp yields a non-zero class in Hiyo(PSLz(Z)).

From [Gri95]: some cases in the proof of ||d masp||, < 6.




From computing the dimension to describing a basis

The dimension of HZ(I') is roughly known for many groups:
O If I is amenable then Hj (I R) =0
@ If I is word hyperbolic then dim H2(I") = oo [EF97]
© If I = Mod(F) then dim H2(I') = oo [BF02, Fuj09].

free product of two copies of an infinite cyclic group; that is a free group with
two generators. However in [9] there is no discussion about the generation
of H(z)(Z * Z) but only the statement that the dimension of H,fz)(Z *xZ) is
lnﬁnlte Let us analyze thls statement.

From [Gri95]: what about generating PX( )?

Assertion 5.1 The bounded 2-cocycles M) fw are all non-trivial cocycles,
and are all linearly independent.

But the last statement of the assertion is not correct as the following ex-

From [Gri95]: beware of independence!



A Schauder basis for HZ(I")

Definition Schauder basis:

For a topological R-vector space V/, a sequence (xp)nen is a basis when

Vv eV, 3l(c(v)) eRY, V:ZC,,(V)-X,,,

and a Schauder basis when the coefficient functionals ¢, are continuous.

ew(g) = number of times W occurs in § — number of times W~ occurs in g,

where 7 is the reduced cyclic word corresponding to the element g € N.
Repeating the arguments used when proving Theorem 5.7 we get

Theorem 5.11 The space H,f’zz)(N) is infinite dimensional. It is isomorphic
to the space PX(N) and every element f € PX(N) can be uniquely written

in the form
f = Z awew.
WepPt
for some coefficients aw € R.

The Schauder base of PX(PSLx(Z)) of [Gri95, Theorem 5.11]
Schauder base: masp € PX(PSL2(Z)) for non-overlapping P € PSLz(N)/*.J




@ Schauder basis of pseudocharacters from linking numbers



Linking number: sum crossings indexed by linked patterns

Lemma [Sim22, 4.34] & [Sim25, 7.1]: linking counts sum of crossings
For hyperbolic A, B € PSLy(N) the corresponding modular knots have:

1 (occRWL(A) . ochwR(B))
k(A B) = 3 >

+
occrwr(A) - occruL(B)

where the summation extends over all words w € PSL,(N).




Pseudocharacters from asymetric linking numbers

Definition [Sim25, 7.6]: The cosign functions

For A € PSLy(Z), define the cosign function C4: PSLy(Z) — Z as the
antisymmetric linking number: Ca(B) := 1 (Ik(A, B) — Ik(A™L, B))

Proposition [Sim25, 7.6]: decompose C, in the Schauder basis (masp)
For A, B € PSLy(N), we may decompose C4 as:

1 (OCCRWL(A) ° masLWR(B))
CA(B) = IK(A, B) — Ik(A,B") = 5 > I

w OCCLWR(A) : maSRwL(B)

the sum over all words w € PSL»(N) with len(w) < max{len A, len B}.

Theorem [Sim25, 7.6, 7.7]: Pseudochracters from linking numbers
@ For all A € PSLy(N) we have C4 € PX(PSL2(Z)) and ||d Cal|oo < 6.
@ Linear relations spanned by Can = nCy for A € PSLy(Z) and n € Z.
(In particular C4 is trivial if and only if A is conjugate to A=1.)




Link equivalence

To prove the non-triviality and linear independance of the C4 for A € Py,
we were led to show the non-degeneracy of the linking form.
Lemma [Sim25] : The linking pairing is non-degenerate

If hyperbolic A, B € PSLy(Z) are link equivalent, then they are conjugate.
(Link equivalence: VX € PSL»(Z), lk(A, X) = Ik(B, X).)

Linking recovers intersection
For hyperbolic A, B € PSLy(Z) we have 3/(A, B) = Ik(A, B) + Ik(A™1, B)

V.

Intersection from modular cocycles

For hyperbolic A € PSLy(Z), [DIT17] construct a modular function
whose symbol recovers /(A,-) = 2(Ik(A,-) + k(A~1,.)).

What about the cosign Ca(-) = Ik(A,-) — Ik(A™L,.) ?




Schauder basis of PX(PSLy(Z)) from linking numbers

Definition: conjugacy classes modulo powers

The set P of primitive infinite order conjugacy classes in PSL2(Z)
contains the subset Py of those which are stable under inversion.

Partition P \ Py = P_ U P4 in two subsets in bijection by inversion.
We may choose R € P, and note that Cg = lk(trefoil, ).

Theorem [Sim25]: Schauder basis for PX(PSL,(Z))

The collection of C4 € PX(I'; R) for A € P, is a Schauder basis:
o Vf € PX(PSLo(Z):R), 3 (ca(f)), € RP*, = ,ca(f)-Ca
@ The period coefficients ca: f — ca(f) are continuous

— Fourier theory of pseudocharacters, with a natural basis of cosigns.

Does C, yield an extremizer in the duality [Bav91, Theorem] ?

o For AcT: scl(A) = sup{|p(A)|/|ld¢lle: ¢ € PX(T)\ HY(I)}
@ The extremal ¢ obtained by Hanh-Banach is not constructed... C»?




Sketch of a project to find Schauder bases of PX(Mod([F))

Problem 4.10 To construct a basis for H§2)(Bn).

Mapping class group Mod(IF) acts on curve complex C(TF):
@ Metric space C(FF) is hyperbolic and C(F) are ending laminations
@ The hyperbolic isometries of C(IF) are pseudo-Anosov elements A

e Fixed points of A in OC(F) are stable-unstable measured laminations.
V.

Schauder bases for PX(Mod([F)) from combinatorics of monoids:

o Define Brooks—Series Barge—Ghys cocycles masp in H2(Mod(F); R).

@ Find basis of masp for P in “train track monoid” of Dehn-twists.

Schauder basis for PX(Mod(IF)) from asymetric linking periods:
@ Define Ik(A, B) as sum cross-ratio of fixed points over double cosets.
@ Show basis of C4 for classes of pseudo-Anosov A modulo powers.

@ Show Cj4 are extremizers in Bavard duality.
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Moral of the story...

So many mysteries are concealed within a simple trefoil !

O\

Région
Hauts-de-France

Thank you for your attention and feel free to ask unbounded questions. )




@ Geometric sums recover linking at the boundary of the character variety



Character variety X(PSLy(Z), PSL,(R))

Caracters of Fuchsian representations :

Complete hyperbolic p: PSLy(Z) — PSL,(R)
{ metrics on M — p faithful & discrete / PSLa(R)

@ Real algebraic torus of dim 1, parametrized by g € R*.

@ The matrix Ay = pg(A) is obtained from a factorisation of A into a
product of L&R by replacing L ~» Ly and R ~» Rq where

g O qg 1
fa = (1 ql) o= <0 ql)'

pa: PSLa(Z) — PSLa(Z[q, g~ 1))

Conjugacy classes of infinite order Closed geodesics
in m1(Mg) = PSL2(Z) in Mg = pq(PSL2(Z))\HP




The bivariate Poincaré g-series L4(A, B)

Definition : "the Alexander-Poincaré g-pairing"
For hyperbolic A, B € PSLy(Z), we define the sum :

Lo([AL [B]) := 3 (cos36,)® € v/Q(q)

over the intersection angles 6, of the g-modular geodesics [ag], [84] C M.
This defines a function of g € R*, or on X(PSL2(Z), PSL2(R)).

Intersection angle 0, €] — 7, 7[ has cos(0,) = [ag, af: By, B4



Linking function at the boundary of the character variety
Theorem [Sim25] : Linking number as value of L, at +00 € 90X
For hyperbolic A, B € PSLy(Z), we have the special value :

Lq([A], [B]) . 21k(ka, kg).

The linking function g — Lq([A], [B]) interpolates between the
arithmetic-geometry at g = 1 and the geometric-topology at g = oc.

For A=[1, 2] and B=[1, 2].

T T T T T T T T T T T T T T T T T T
-8 —6 -4 -2 o 2 4 () B -8 -6 -4 -2 o 2 4 & B

The linking functions g — L4(A, B) and g — L,(A~*, B) have average /(A, B).




Graphs of g — L4(A, B) for real and complex g

For A=[1, 2] and B=[1, 2].
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Lo(A, B) and Lg(A, B*) for A= B = RLL and B* = RRL.



Graphs of g — L4(A, B) for real and complex g

For A=[1, 4] and B=[1, 4].
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Ly(A, B) and Lo(A, B*) for A= B = RL* and B* = R*L.



Graphs of g — L4(A, B) for real and complex g

For A=[1, 8] and B=[1, 8].

his
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Ly(A, B) and Ly(A, B*) for A= B = RL® and B* = R8L.



More graphs of g — L4(A,

glink{[1, 21.[3, 11) for |g|<1.6
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qglink([1, 31,2, 3]) for |g|<1.6
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B) for complex g

glink{[1, 31.[1, 51} for |g]|<1.6
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-15
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[7.2, 1, 1]) for |q|<1.2

qlink([3, 1, 2, 3]/

00

L4(A, B) for various cycles A and B.



Proof using the action of PSLy(Z) on the trivalent tree T

@ Lift the convex core of Mg in HP : %—neighbourhood of 7.

)

NS

@ The representation pg tends to the action of PSLy(Z) on T.



Proof using the action of PSLy(Z) on the trivalent tree T

© The angles 8, — 0 mod 7 thus cos(f4) — +1.
© The sum L4 (A, B) counts the pairs of axes (+1,+1) :

across +]_ O O

cosign

2 P A DAL

A P DK

@ In the unit tangent bundle of Mg, the master g-modular link is
isotoped into a branched surface called the Lorenz template

@ In the limit, we recover an algorithmic formula for linking numbers in
terms of the L& R-cycles, using the topology of the Lorenz template.
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